首页> 外文期刊>Neurocomputing >Multi-facet user preference learning for fine-grained item recommendation
【24h】

Multi-facet user preference learning for fine-grained item recommendation

机译:多方面的用户偏好学习,可实现细粒度的项目推荐

获取原文
获取原文并翻译 | 示例

摘要

Existing recommendation methods mainly learn user preference from historical user-item interaction data, while ignoring the extent of interactions, i.e., diverse user experience and user intention. To be more specific, for new users with little or no experience, they may turn to popular items preferred by majority users. In terms of those medium-level users who already have interacted with some items, they may require and expect items to meet their personal preferences. As pro-active users are likely to leave rich behavior (action) feedback (e.g., view, like) on the items they interacted with, the system will have good chance to better interpret users' intention, and thus generate more accurate and elaborate recommendations to hit their preferences. In this paper, we propose a generic Multi-facet User Preference Learning (MUPL) framework for fine-grained item recommendation. By considering diverse user experience and intention, MUPL captures user preference in the level of group-, individual- and action-facet. Besides, the importance of user preference in different facets can be automatically learnt by MUPL. Extensive experiments on two real-world datasets (Xing, Sobazaar) demonstrate the superiority of our proposed approach over other state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:现有的推荐方法主要从历史用户-项目交互数据中学习用户偏好,而忽略交互的程度,即不同的用户体验和用户意图。更具体地说,对于经验很少或没有经验的新用户,他们可能会转向大多数用户偏爱的热门商品。对于已经与某些项目进行交互的那些中级用户,他们可能会要求并期望这些项目满足其个人喜好。由于积极的用户可能会在与他们交互的项目上留下丰富的行为(动作)反馈(例如,视图等),因此系统将有很好的机会更好地解释用户的意图,从而生成更准确,更详尽的建议达到他们的喜好。在本文中,我们提出了一个通用的多方面用户偏好学习(MUPL)框架,用于细粒度的项目推荐。通过考虑不同的用户体验和意图,MUPL可以从群体,个人和行为方面捕获用户的偏好。此外,MUPL可以自动了解用户偏好在不同方面的重要性。在两个现实世界的数据集(Xing,Sobazaar)上进行的大量实验证明,我们提出的方法优于其他最新方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号