首页> 外文期刊>Expert systems with applications >Item recommendation by predicting bipartite network embedding of user preference
【24h】

Item recommendation by predicting bipartite network embedding of user preference

机译:通过预测用户偏好的二分网络嵌入二分网络嵌入项目建议

获取原文
获取原文并翻译 | 示例

摘要

With the development of e-commerce, various methodologies have studied to improve recommendation performance. Recently, many deep learning based network embedding approaches are applied to the recommendation domain. However, these approaches still have several limitations, such as the problem of data sparseness and the changing in user preference over time, which cannot be considered. In this paper, we propose a novel method for item recommendation based on network embedding. First, we apply a bipartite network embedding to address the data sparsity problem. Bipartite network embedding is a vector representation method that reflects explicit (i.e., observed data) and implicit relations (i.e., unobserved data). Bipartite network embedding methodology can address the data sparsity problem by using implicit relationship information from applying the random walk approach. Second, we predict future bipartite network embedding of user preference by adopting a Kalman filter to consider the changes in user preferences. We have conducted experiments to evaluate the effectiveness and performance of the proposed recommendation method. Through experimentation, the proposed recommendation method is validated as outperforming than the existing approaches including existing network embedding methods. (C) 2020 Elsevier Ltd. All rights reserved.
机译:随着电子商务的发展,研究了各种方法,以提高推荐性能。最近,许多基于深度学习的网络嵌入方法应用于推荐域。然而,这些方法仍然有几个限制,例如数据稀疏问题以及用户偏好随时间的更改,这是不能考虑的。在本文中,我们提出了一种基于网络嵌入的项目建议的新方法。首先,我们应用双方网络嵌入来解决数据稀疏问题。二角形网络嵌入是一种矢量表示方法,其反映显式(即观察到的数据)和隐式关系(即,未观察到的数据)。二角形网络嵌入方法可以通过使用隐式关系信息应用随机步行方法来解决数据稀疏问题。其次,我们通过采用卡尔曼滤波器来考虑用户偏好的更改来预测用户偏好的未来二分网络嵌入用户偏好。我们已经进行了实验,以评估拟议推荐方法的有效性和表现。通过实验,拟议的推荐方法被验证为优于现有方法,包括现有网络嵌入方法的现有方法。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号