首页> 外文期刊>ACM Transactions on Information Systems >A Context-Aware User-Item Representation Learning for Item Recommendation
【24h】

A Context-Aware User-Item Representation Learning for Item Recommendation

机译:用于项目推荐的上下文感知用户项目表示学习

获取原文
获取原文并翻译 | 示例

摘要

Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode user preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is incapable of fully capturing users' preferences, because users usually exhibit different preferences when interacting with different items. In this article, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data, respectively: review-based feature learning and interaction-based feature learning. In the review-based learning component, with convolution operations and attention mechanism, the pair-based relevant features for the given user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only reivew-driven and may not be comprehensive. Hence, an interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on seven real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with the attention mechanism, we show that the pair-based relevant information (i.e., context-aware information) in reviews can be highlighted to interpret the rating prediction for different user-item pairs.
机译:评论和用户项目互动(即评分分数)都已广泛用于用户评分预测。但是,这些现有技术主要以独立和静态的方式提取用户和项目的潜在表示。即,在不考虑每个候选项目的特定特征的情况下,导出单个静态特征向量以对用户偏好进行编码。我们认为这种静态编码方案无法完全捕获用户的偏好,因为用户在与不同项目进行交互时通常会表现出不同的偏好。在本文中,我们提出了一种用于评级预测的新型上下文感知用户项表示学习模型,称为CARL。 CARL根据用户对各自的潜在特征和潜在特征交互作用,得出给定用户-项目对的联合表示。然后,CARL采用分解机进一步根据用户项目对对高阶特征交互进行建模,以进行评分预测。具体来说,CARL中设计了两个单独的学习组件来分别利用评论数据和交互数据:基于评论的特征学习和基于交互的特征学习。在基于评论的学习组件中,通过卷积运算和注意力机制,通过共同考虑对应的评论来提取给定用户项对的基于对的相关特征。但是,这些功能仅是reivew驱动的,可能并不全面。因此,基于交互的学习组件还基于用户项对,单独从交互数据中提取互补特征。然后使用动态线性融合机制得出最终评分。在七个真实世界的数据集上进行的实验表明,CARL的评分预测准确度比现有的最新技术要好得多。同样,通过注意力机制,我们表明可以突出显示评论中基于对的相关信息(即上下文感知信息),以解释不同用户项对的评级预测。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2019年第2期|22.1-22.29|共29页
  • 作者单位

    Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China;

    Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China;

    Wuhan Univ, Key Lab Aerosp Informat Secur & Trusted Comp, Minist Educ, Sch Cyber Sci & Engn, Wuhan, Hubei, Peoples R China;

    Wuhan Univ, Key Lab Aerosp Informat Secur & Trusted Comp, Minist Educ, Sch Cyber Sci & Engn, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Comp Sci, Wuhan, Hubei, Peoples R China;

    State Key Lab Math Engn & Adv Comp, Zhengzhou, Henan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rating prediction; neural networks; recommendation systems;

    机译:评级预测;神经网络;推荐系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号