首页> 外文期刊>Neurocomputing >Multi-level attentive deep user-item representation learning for recommendation system
【24h】

Multi-level attentive deep user-item representation learning for recommendation system

机译:推荐系统的多级殷勤深度用户项目表示学习

获取原文
获取原文并翻译 | 示例

摘要

With the development of e-commerce platforms, user reviews have become a vital source of information to address the sparsity problems for enhancing the predictive performance of the recommendation systems (RSs). However, the traditional methods of the RSs used to model user/item latent features based on static vectors in an independent manner without considering the dynamic nature of the user-item interactions which potentially affect the accuracy of the recommendation process. Thus, this paper proposes a RS model that exploits neural attention techniques to learn user/item representations by jointly considering the fine-grained semantic information for the user-item pairs. The proposed model utilizes both review-based and interaction-specific features for the user/item reviews to learn heterogeneous user/ item representations. First, a BiLSTM sequence encoder is used to learn the contextual information of words, and a Co-attention network is then designed to jointly capture the most relevant semantic information of reviews for the user-item pair. To better capture user/item latent factors comprehensively, interaction-specific features based on the rating scores are further integrated with the review-specific latent features via a shared hidden layer. Finally, an attentive factorization machine (FM) is then applied on the shared hidden layer of the integrated user/item features for the final prediction. We carry out a series of experiments using real-world datasets and the results demonstrate that our proposed method is better than the baseline approaches in terms of both rating prediction and ranking performance.(c) 2020 Elsevier B.V. All rights reserved.
机译:随着电子商务平台的发展,用户评论已成为解决疲劳问题的重要信息来源,以提高推荐系统的预测性能(RSS)。然而,RSS的传统方法用于根据静态矢量以独立方式模拟用户/项目潜在的功能,而不考虑潜在地影响推荐过程的准确性的用户项目交互的动态性质。因此,本文提出了一种RS模型,其利用神经注意技术来通过联合考虑用户项对的细粒度语义信息来学习用户/项目表示。该拟议的模型利用基于审查和特定于用户/项目审查的特定于互动特征来学习异构用户/项目表示。首先,使用Bilstm序列编码器来学习单词的上下文信息,然后设计共同关注网络以共同捕获用户项对的评论的最相关的语义信息。为了全面捕获用户/项目潜伏因素,基于评级分数的互动特定特征进一步通过共享隐藏层与审查特定的潜在特征集成。最后,然后在最终预测的集成用户/项目特征的共享隐藏层上应用分娩分解机(FM)。我们使用现实世界数据集进行一系列实验,结果表明,我们的建议方法优于评级预测和排名性能方面的基线方法。(c)2020 Elsevier B.V.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号