首页> 外文期刊>Neurocomputing >Brain-inspired self-organizing modular structure to control human-like movements based on primitive motion identification
【24h】

Brain-inspired self-organizing modular structure to control human-like movements based on primitive motion identification

机译:灵感来自大脑的自组织模块化结构,可基于原始运动识别来控制类人的运动

获取原文
获取原文并翻译 | 示例

摘要

In this paper we will propose a modular structure to control the human-like movements of a robot in a way similar to which human brain does to perform the motor control. Modeling of human motor control and motor learning has attracted researchers' attention in robotics and artificial intelligence for decades. It is obvious that discovering the motor control functionality of brain as the most complex, sophisticated and powerful information-processing device leads to significant advancements in robots movement Hence, our proposed modular controller is based on human brain behavior in using neural mechanisms named internal models and primitive motion identification which leads to extract and learn the latent simple motions in order to imitate observed complex movements. The study is accomplished based on formerly proposed structure, MOSAIC, which provides remarkable efficiency in motor control modeling. Examination of the proposed structure with real recorded data, confirms the performance of the controller in learning and executing motion tasks. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们将提出一种模块化结构,以类似于人脑执行电机控制的方式来控制机器人的类人运动。数十年来,人类运动控制和运动学习的建模吸引了研究人员在机器人技术和人工智能方面的关注。显然,发现大脑的运动控制功能是最复杂,复杂,功能最强大的信息处理设备,会导致机器人运动取得重大进展。因此,我们提出的模块化控制器基于人类大脑的行为,使用的是内部模型和神经机制。原始运动识别,可以提取和学习潜在的简单运动,以模仿观察到的复杂运动。该研究是基于先前提出的结构MOSAIC完成的,该结构在电机控制建模中提供了显着的效率。用实际记录的数据对提议的结构进行检查,确认了控制器在学习和执行运动任务中的性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第3期|1436-1442|共7页
  • 作者单位

    Amirkabir Univ Technol, Neural & Cognit Sci Lab, Tehran 15914, Iran|Amirkabir Univ Technol, Tehran Polytech, Dept Elect Engn, Ctr Excellence Control & Robot, Tehran 15914, Iran;

    Amirkabir Univ Technol, Tehran Polytech, Dept Elect Engn, Ctr Excellence Control & Robot, Tehran 15914, Iran|Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada;

    Amirkabir Univ Technol, Neural & Cognit Sci Lab, Tehran 15914, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Robot Motion Control; Human Motor Control; Modular Control; Primitive Motion Learning; Hidden Markov Model;

    机译:机器人运动控制;人类电机控制;模块化控制;原始运动学习;隐马尔可夫模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号