首页> 外文期刊>IEEE Transactions on Neural Networks >Support vector machine with adaptive parameters in financial time series forecasting
【24h】

Support vector machine with adaptive parameters in financial time series forecasting

机译:金融时间序列预测中具有自适应参数的支持向量机

获取原文
获取原文并翻译 | 示例

摘要

A novel type of learning machine called support vector machine (SVM) has been receiving increasing interest in areas ranging from its original application in pattern recognition to other applications such as regression estimation due to its remarkable generalization performance. This paper deals with the application of SVM in financial time series forecasting. The feasibility of applying SVM in financial forecasting is first examined by comparing it with the multilayer back-propagation (BP) neural network and the regularized radial basis function (RBF) neural network. The variability in performance of SVM with respect to the free parameters is investigated experimentally. Adaptive parameters are then proposed by incorporating the nonstationarity of financial time series into SVM. Five real futures contracts collated from the Chicago Mercantile Market are used as the data sets. The simulation shows that among the three methods, SVM outperforms the BP neural network in financial forecasting, and there are comparable generalization performance between SVM and the regularized RBF neural network. Furthermore, the free parameters of SVM have a great effect on the generalization performance. SVM with adaptive parameters can both achieve higher generalization performance and use fewer support vectors than the standard SVM in financial forecasting.
机译:一种新型的学习机,称为支持向量机(SVM),由于其卓越的泛化性能,从模式识别的原始应用到其他应用(例如回归估计),都受到了越来越多的关注。本文探讨了支持向量机在金融时间序列预测中的应用。首先通过与多层反向传播(BP)神经网络和正则化径向基函数(RBF)神经网络进行比较,研究了将SVM应用于财务预测的可行性。实验研究了SVM相对于自由参数的性能差异。然后通过将金融时间序列的非平稳性纳入支持向量机中,提出自适应参数。从芝加哥商品市场整理的五个真实期货合约被用作数据集。仿真表明,在三种方法中,支持向量机在财务预测方面优于BP神经网络,并且在支持向量机和正则化RBF神经网络之间具有可比的泛化性能。此外,SVM的自由参数对泛化性能有很大影响。在财务预测中,具有自适应参数的SVM既可以实现更高的泛化性能,又可以使用比标准SVM更少的支持向量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号