首页> 中文期刊> 《应用数学与计算数学学报(英文)》 >基于支持向量机的高频金融时间序列预测

基于支持向量机的高频金融时间序列预测

     

摘要

支持向量机(support vector machine,SVM)方法是建立在统计学习理论的VC(Vapnik-Chervonenkis)维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(对特定训练样本的学习精度)和学习能力(无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力.基本原理是,以二维数据为例,如果训练数据分布在二维平面上的点,它们按照其分类聚集在不同的区域.通过训练,找到这些分类之间的边界.利用SVM方法,针对上海期货交易所挂牌交易的2011年期货铜主力合约500 ms每tick的高频数据进行分析.分析结果表明,SVM方法可以取得较好的预测效果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号