首页> 外文期刊>IEEE Transactions on Neural Networks >The Hierarchical Fast Learning Artificial Neural Network (HieFLANN)2014;An Autonomous Platform for Hierarchical Neural Network Construction
【24h】

The Hierarchical Fast Learning Artificial Neural Network (HieFLANN)2014;An Autonomous Platform for Hierarchical Neural Network Construction

机译:分层快速学习人工神经网络(HieFLANN)2014;分层神经网络构建的自主平台

获取原文
获取原文并翻译 | 示例

摘要

The hierarchical fast learning artificial neural network (HieFLANN) is a clustering NN that can be initialized using statistical properties of the data set. This provides the possibility of constructing the entire network autonomously with no manual intervention. This distinguishes it from many existing networks that, though hierarchically plausible, still require manual initialization processes. The unique system of hierarchical networks begins with a reduction of the high-dimensional feature space into smaller and manageable ones. This process involves using the $K$ -iterations fast learning artificial neural network (KFLANN) to systematically cluster a square matrix containing the Mahalanobis distances (MDs) between data set features, into homogeneous feature subspaces (HFSs). The KFLANN is used for its heuristic network initialization capabilities on a given data set and requires no supervision. Through the recurring use of the KFLANN and a second stage involving canonical correlation analysis (CCA), the HieFLANN is developed. Experimental results on several standard benchmark data sets indicate that the autonomous determination of the HFS provides a viable avenue for feasible partitioning of feature subspaces. When coupled with the network transformation process, the HieFLANN yields results showing accuracies comparable with available methods. This provides a new platform by which data sets with high-dimensional feature spaces can be systematically resolved and trained autonomously, alleviating the effects of the curse of dimensionality.
机译:分层快速学习人工神经网络(HieFLANN)是可以使用数据集的统计属性初始化的聚类NN。这提供了在没有人工干预的情况下自动构建整个网络的可能性。这使其与许多现有网络区分开来,尽管现有网络在层次上看似合理,但仍需要手动初始化过程。独特的分层网络系统始于将高维特征空间缩小为更小且可管理的特征空间。此过程涉及使用$ K $迭代快速学习人工神经网络(KFLANN)将包含数据集特征之间的马氏距离(MD)的方阵系统地聚类为齐次特征子空间(HFS)。 KFLANN用于给定数据集的启发式网络初始化功能,无需监督。通过KFLANN的重复使用以及涉及规范相关分析(CCA)的第二阶段,开发了HieFLANN。在几个标准基准数据集上的实验结果表明,HFS的自主确定为特征子空间的可行划分提供了可行的途径。与网络转换过程结合使用时,HieFLANN产生的结果显示出与可用方法相当的准确性。这提供了一个新平台,通过该平台可以对具有高维特征空间的数据集进行系统地解析和自主训练,从而减轻维数诅咒的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号