首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Hierarchical Deep Learning Neural Network (HiDeNN): An artificial intelligence (AI) framework for computational science and engineering
【24h】

Hierarchical Deep Learning Neural Network (HiDeNN): An artificial intelligence (AI) framework for computational science and engineering

机译:分层深度学习神经网络(HIDENn):一种人工智能(AI)计算科学与工程框架

获取原文
获取原文并翻译 | 示例

摘要

In this work, a unified AI-framework named Hierarchical Deep Learning Neural Network (HiDeNN) is proposed to solve challenging computational science and engineering problems with little or no available physics as well as with extreme computational demand. The detailed construction and mathematical elements of HiDeNN are introduced and discussed to show the flexibility of the framework for diverse problems from disparate fields. Three example problems are solved to demonstrate the accuracy, efficiency, and versatility of the framework. The first example is designed to show that HiDeNN is capable of achieving better accuracy than conventional finite element method by learning the optimal nodal positions and capturing the stress concentration with a coarse mesh. The second example applies HiDeNN for multiscale analysis with sub-neural networks at each material point of macroscale. The final example demonstrates how HiDeNN can discover governing dimensionless parameters from experimental data so that a reduced set of input can be used to increase the learning efficiency. We further present a discussion and demonstration of the solution for advanced engineering problems that require state-of-the-art AI approaches and how a general and flexible system, such as HiDeNN-AI framework, can be applied to solve these problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:在这项工作中,提出了一个名为分层深度学习神经网络(Hidenn)的统一的AI框架,以解决挑战性的计算科学和工程问题,几乎没有可用的物理学以及极端的计算需求。介绍并讨论了隐藏处的详细构造和数学元素,以显示框架的灵活性,以了解不同领域的不同问题。解决了三个示例问题,以展示框架的准确性,效率和多功能性。第一示例旨在表明Hidenn能够通过学习最佳节点位置并用粗网捕获应力集中来实现比传统的有限元方法更好的精度。第二个例子将Hidenn应用于Mucroscale的每个材料点的子神经网络的多抗体分析。最后的示例演示了Hidenn如何从实验数据发现控制无量纲参数,以便可以使用减少的输入集来提高学习效率。我们进一步介绍了需要最先进的AI方法以及如何应用诸如Hidenn-AI框架的一般和灵活的系统的先进工程问题解决方案的讨论和演示可以应用于解决这些问题。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号