首页> 外文期刊>IEEE Transactions on Neural Networks >Neural-Network-Based Approximate Output Regulation of Discrete-Time Nonlinear Systems
【24h】

Neural-Network-Based Approximate Output Regulation of Discrete-Time Nonlinear Systems

机译:基于神经网络的离散非线性系统近似输出调节

获取原文
获取原文并翻译 | 示例

摘要

The existing approaches to the discrete-time nonlinear output regulation problem rely on the offline solution of a set of mixed nonlinear functional equations known as discrete regulator equations. For complex nonlinear systems, it is difficult to solve the discrete regulator equations even approximately. Moreover, for systems with uncertainty, these approaches cannot offer a reliable solution. By combining the approximation capability of the feedforward neural networks (NNs) with an online parameter optimization mechanism, we develop an approach to solving the discrete nonlinear output regulation problem without solving the discrete regulator equations explicitly. The approach of this paper can be viewed as a discrete counterpart of our previous paper on approximately solving the continuous-time nonlinear output regulation problem.
机译:解决离散时间非线性输出调节问题的现有方法依赖于一组称为离散调节器方程的混合非线性功能方程的离线解。对于复杂的非线性系统,很难甚至近似地求解离散的调节器方程。此外,对于不确定的系统,这些方法无法提供可靠的解决方案。通过将前馈神经网络(NNs)的逼近能力与在线参数优化机制相结合,我们开发了一种解决离散非线性输出调节问题的方法,而无需明确解决离散调节器方程。可以将本文的方法视为与我们先前的论文的离散对等,以近似解决连续时间非线性输出调节问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号