首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Discrete-Time Neural Inverse Optimal Control for Nonlinear Systems via Passivation
【24h】

Discrete-Time Neural Inverse Optimal Control for Nonlinear Systems via Passivation

机译:钝化对非线性系统的离散神经逆最优控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a discrete-time inverse optimal neural controller, which is constituted by combination of two techniques: 1) inverse optimal control to avoid solving the Hamilton–Jacobi–Bellman equation associated with nonlinear system optimal control and 2) on-line neural identification, using a recurrent neural network trained with an extended Kalman filter, in order to build a model of the assumed unknown nonlinear system. The inverse optimal controller is based on passivity theory. The applicability of the proposed approach is illustrated via simulations for an unstable nonlinear system and a planar robot.
机译:本文提出了一种离散时间逆最优神经控制器,它由两种技术组合而成:1)逆最优控制,以避免求解与非线性系统最优控制相关的Hamilton–Jacobi–Bellman方程; 2)在线神经辨识,使用经过扩展卡尔曼滤波器训练的递归神经网络,以建立假定的未知非线性系统的模型。逆最优控制器基于无源性理论。通过对不稳定的非线性系统和平面机器人的仿真说明了所提出方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号