首页> 外文期刊>Neural Networks, IEEE Transactions on >Neural-Network-Based Near-Optimal Control for a Class of Discrete-Time Affine Nonlinear Systems With Control Constraints
【24h】

Neural-Network-Based Near-Optimal Control for a Class of Discrete-Time Affine Nonlinear Systems With Control Constraints

机译:一类具有控制约束的离散仿射非线性系统的基于神经网络的近最优控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the near-optimal control problem for a class of nonlinear discrete-time systems with control constraints is solved by iterative adaptive dynamic programming algorithm. First, a novel nonquadratic performance functional is introduced to overcome the control constraints, and then an iterative adaptive dynamic programming algorithm is developed to solve the optimal feedback control problem of the original constrained system with convergence analysis. In the present control scheme, there are three neural networks used as parametric structures for facilitating the implementation of the iterative algorithm. Two examples are given to demonstrate the convergence and feasibility of the proposed optimal control scheme.
机译:本文通过迭代自适应动态规划算法解决了一类具有控制约束的非线性离散时间系统的近似最优控制问题。首先,提出了一种新的非二次性能函数来克服控制约束,然后通过迭代分析,提出了一种迭代自适应动态规划算法,以解决原始约束系统的最优反馈控制问题。在本控制方案中,存在三个神经网络用作参数结构,以促进迭代算法的实现。给出了两个例子来说明所提出的最优控制方案的收敛性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号