首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Incorporating Privileged Information Through Metric Learning
【24h】

Incorporating Privileged Information Through Metric Learning

机译:通过公制学习整合特权信息

获取原文
获取原文并翻译 | 示例

摘要

In some pattern analysis problems, there exists expert knowledge, in addition to the original data involved in the classification process. The vast majority of existing approaches simply ignore such auxiliary (privileged) knowledge. Recently a new paradigm—learning using privileged information—was introduced in the framework of ${rm SVM}+$. This approach is formulated for binary classification and, as typical for many kernel-based methods, can scale unfavorably with the number of training examples. While speeding up training methods and extensions of ${rm SVM}+$ to multiclass problems are possible, in this paper we present a more direct novel methodology for incorporating valuable privileged knowledge in the model construction phase, primarily formulated in the framework of generalized matrix learning vector quantization. This is done by changing the global metric in the input space, based on distance relations revealed by the privileged information. Hence, unlike in ${rm SVM}+$, any convenient classifier can be used after such metric modification, bringing more flexibility to the problem of incorporating privileged information during the training. Experiments demonstrate that the manipulation of an input space metric based on privileged data improves classification accuracy. Moreover, our methods can achieve competitive performance against the ${rm SVM}+$ formulations.
机译:在某些模式分析问题中,除涉及分类过程的原始数据外,还存在专家知识。绝大多数现有方法只是忽略了此类辅助(特权)知识。最近,在 $ {rm SVM} + $ 的框架中引入了一种新的范例-使用特权信息进行学习。这种方法是针对二进制分类而制定的,并且对于许多基于内核的方法而言,这种方法通常会因培训示例的数量而不利地扩展。在加快训练方法和将 $ {rm SVM} + $ 的扩展扩展到多类问题的同时,本文提出了一种更直接的新颖方法,用于在模型构建阶段合并有价值的特权知识,主要是在广义矩阵学习矢量量化的框架中制定的。这是通过基于特权信息揭示的距离关系通过更改输入空间中的全局度量来完成的。因此,与 $ {rm SVM} + $ 不同,在这种度量修改后可以使用任何方便的分类器,从而带来更大的灵活性解决在培训期间合并特权信息的问题。实验表明,基于特权数据的输入空间度量的操纵可提高分类准确性。而且,我们的方法相对于 $ {rm SVM} + $ 公式可以达到竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号