首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training
【24h】

Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training

机译:具有在线梯度下降训练的基于忆阻器的多层神经网络

获取原文
获取原文并翻译 | 示例

摘要

Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS. In this paper, a method for performing these update operations simultaneously (incremental outer products) using memristor-based arrays is proposed. The method is based on the fact that, approximately, given a voltage pulse, the conductivity of a memristor will increment proportionally to the pulse duration the pulse magnitude if the increment is sufficiently small. The proposed method uses a synaptic circuit composed of a small number of components per synapse: one memristor and two CMOS transistors. This circuit is expected to consume between 2% and 8% of the area and static power of previous CMOS-only hardware alternatives. Such a circuit can compactly implement hardware MNNs trainable by scalable algorithms based on online gradient descent (e.g., backpropagation). The utility and robustness of the proposed memristor-based circuit are demonstrated on standard supervised learning tasks.
机译:多层神经网络(MNN)中的学习依赖于通过局部规则连续更新大型矩阵的突触权重。在硬件中实现MNN时,可以利用此类局部性进行大规模并行处理。但是,这些更新规则需要针对每个突触权重进行乘法和累加运算,这对于使用CMOS紧凑实现具有挑战性。在本文中,提出了一种使用基于忆阻器的阵列同时执行这些更新操作(增量外部乘积)的方法。该方法基于以下事实:如果给定一个电压脉冲,则忆阻器的电导率将与脉冲持续时间成比例地增加,如果该增量足够小,则该脉冲幅度为脉冲大小。所提出的方法使用每个突触由少量组件组成的突触电路:一个忆阻器和两个CMOS晶体管。预计该电路将消耗2%至8%的面积和静态功耗,而以前的纯CMOS硬件替代产品则如此。这样的电路可以紧凑地实现可通过基于在线梯度下降(例如,反向传播)的可伸缩算法训练的硬件MNN。拟议的基于忆阻器的电路的实用性和鲁棒性在标准的监督学习任务中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号