首页> 外文期刊>Neural Computing & Applications >A comparative evaluation of nonlinear dynamics methods for time series prediction
【24h】

A comparative evaluation of nonlinear dynamics methods for time series prediction

机译:非线性动力学方法对时间序列预测的比较评估

获取原文
获取原文并翻译 | 示例

摘要

A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation may be a long process. In this paper, we investigate alternative methods to cross-validation, based on nonlinear dynamics methods, namely Grassberger–Procaccia, Kégl, Levina–Bickel and False Nearest Neighbors algorithms. The experiments have been performed in two different ways. In the first case, the model order has been used to carry out the prediction, performed by a SVM for regression on three real data time series showing that nonlinear dynamics methods have performances very close to the cross-validation ones. In the second case, we have tested the accuracy of nonlinear dynamics methods in predicting the known model order of synthetic time series. In this case, most of the methods have yielded a correct estimate and when the estimate was not correct, the value was very close to the real one.
机译:使用自回归模型进行时间序列预测的一个关键问题是确定模型顺序,即适当建模时间序列所需的过去样本数。使用交叉验证来估计模型顺序可能是一个漫长的过程。在本文中,我们研究了基于非线性动力学方法的交叉验证的替代方法,即Grassberger–Procaccia,Kégl,Levina–Bickel和False Nearest Neighbors算法。实验以两种不同的方式进行。在第一种情况下,模型顺序已用于执行预测,由SVM执行以对三个真实数据时间序列进行回归,这表明非线性动力学方法的性能非常接近交叉验证方法。在第二种情况下,我们测试了非线性动力学方法在预测合成时间序列的已知模型顺序方面的准确性。在这种情况下,大多数方法都得出了正确的估计值,当估计值不正确时,该值非常接近实际值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号