首页> 外文期刊>Neural computation >Multistability Analysis for Recurrent Neural Networks with Unsaturating Piecewise Linear Transfer Functions
【24h】

Multistability Analysis for Recurrent Neural Networks with Unsaturating Piecewise Linear Transfer Functions

机译:具有不饱和分段线性传递函数的递归神经网络的多稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

Multistability is a property necessary in neural networks in order to enable certain applications (e.g., decision making), where monostable networks can be computationally restrictive. This article focuses on the analysis of multistability for a class of recurrent neural networks with unsat-urating piecewise linear transfer functions. It deals fully with the three basic properties of a multistable network: boundedness, global attractiv-ity, and complete convergence. This article makes the following contributions: conditions based on local inhibition are derived that guarantee boundedness of some multistable networks, conditions are established for global attractivity, bounds on global attractive sets are obtained, complete convergence conditions for the network are developed using novel energy-like functions, and simulation examples are employed to illustrate the theory thus developed.
机译:为了实现某些应用程序(例如决策),多稳定性是神经网络中必不可少的属性,其中单稳态网络可能在计算上受到限制。本文重点分析一类具有不饱和分段线性传递函数的递归神经网络的多重稳定性。它充分处理了多稳定网络的三个基本属性:有界,全局吸引和完全收敛。本文做出了以下贡献:得出了基于局部抑制的条件,以保证某些多稳定网络的有界性;为全局吸引性建立了条件;获得了全局吸引集的边界;使用新颖的类似于能量的方法为网络开发了完整的收敛条件。功能和仿真示例用于说明由此开发的理论。

著录项

  • 来源
    《Neural computation》 |2003年第3期|p.639-662|共24页
  • 作者

    Zhang Yi; K. K. Tan; T. H. Lee;

  • 作者单位

    College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号