首页> 美国卫生研究院文献>PLoS Computational Biology >A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements
【2h】

A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements

机译:分段线性递归神经网络的状态空间方法,用于从神经测量中识别计算动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.
机译:人们通常认为神经系统的计算和认知特性是根据其(随机)网络动力学实现的。因此,从实验观察到的神经元时间序列中恢复系统动力学(如多个单个单位的记录或神经影像数据),是了解其计算的重要一步。理想情况下,人们不仅要寻求动力学的(低维)状态空间表示,而且希望能够获得其统计特性及其生成方程式进行深入分析。递归神经网络(RNN)是一种计算功能强大且动态通用的形式框架,已从计算和动力学系统的角度进行了广泛研究。在这里,我们为状态空间模型的统计框架内的分段线性RNN(PLRNN)开发了一个半分析最大似然估计方案,该方案考虑了潜在潜伏动力学和观测过程中的噪声。 Expectation-Maximization算法用于通过全局Laplace逼近和PLRNN参数迭代地推断潜在状态分布。在验证了玩具示例中的程序并使用通过粒子滤波器的推断进行比较后,该方法被应用于从啮齿动物前扣带回皮层(ACC)进行的多个单单位记录中,这些记录是在执行经典工作记忆任务(延迟轮换)时获得的。从内核平滑的尖峰时间数据估计的模型能够捕获潜在的任务执行基础的计算动力学,包括刺激选择性延迟活动。估计的模型很少是多稳态的,而是被调整为在分叉点附近表现出较慢的动力学。总而言之,本工作为PLRNNs提供了一个半分析(因此速度较快)的最大似然估计框架,该框架可以恢复所观察到的神经元时间序列背后的非线性动力学的相关方面,并将这些方面直接关联至计算属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号