首页> 外文期刊>Memetic Computing >Nonlinear dynamic system identification using recurrent neural network with multi-segment piecewise-linear connection weight
【24h】

Nonlinear dynamic system identification using recurrent neural network with multi-segment piecewise-linear connection weight

机译:多段分段线性连接权重的递归神经网络非线性动态系统辨识

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new concept of the connection weight to the standard recurrent neural networks—Elman and Jordan networks. The architecture of the modified networks is the same as that of the original recurrent neural networks. However, unlike the original recurrent neural networks whose connection weight is a single real number, in the modified networks the weight of each connection is multi-valued, depending on the value of the input data involved. The backpropagation learning algorithm is also modified to suit the proposed concept. The modified networks have been benchmarked against the feedforward neural network and the original recurrent neural networks. The experimental results on twelve benchmark problems show that the modified networks are clearly superior to the other three methods.
机译:本文介绍了到标准递归神经网络-Elman和Jordan网络的连接权重的新概念。修改后的网络的架构与原始递归神经网络的架构相同。但是,与连接权重为单个实数的原始递归神经网络不同,在修改后的网络中,每个连接的权重是多值的,具体取决于所涉及的输入数据的值。反向传播学习算法也进行了修改,以适应提出的概念。修改后的网络已经针对前馈神经网络和原始递归神经网络进行了基准测试。对十二个基准问题的实验结果表明,改进的网络明显优于其他三种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号