首页> 外国专利> METHODS AND SYSTEMS FOR RUNNING DYNAMIC RECURRENT NEURAL NETWORKS IN HARDWARE

METHODS AND SYSTEMS FOR RUNNING DYNAMIC RECURRENT NEURAL NETWORKS IN HARDWARE

机译:用于在硬件中运行动态经常性神经网络的方法和系统

摘要

A method of implementing in hardware a recurrent neural network (RNN) in which each step operates on a different input in a sequence of inputs, such as a time series. A representation of the RNN is transformed into a derivative neural network which operates over a defined plurality of inputs from the sequence of inputs and is equivalent to a plurality of steps of the RNN, e.g. by unrolling the RNN over the plurality of steps. The derivative neural network is iteratively applied to the sequence of inputs by implementing a sequence of instances of the derivative neural network in hardware, and providing the output of each instance of the derivative neural network as the input to the subsequent derivative neural network, so as to operate the RNN over a sequence of inputs longer than the defined plurality of inputs. The RNN may comprise cells. Transforming the RNN may include each cell identifying non-causal operations which are performed independently of the cell’s input, and the derivative neural network grouping together non-causal operations at the cell for parallel processing, e.g. as a single convolution operation. The hardware may include an accelerator having processors adapted to perform convolution operations.
机译:一种在硬件中实现的方法,其经常性神经网络(RNN),其中每个步骤在诸如时间序列的一系列输入中的不同输入上操作。 RNN的表示被转换为衍生神经网络,该衍生神经网络从输入的序列上通过定义的多个输入,并且等同于RNN的多个步骤,例如,通过展开多个步骤的RNN。通过在硬件中实现衍生神经网络的一系列实例来迭代神经网络迭代地应用于输入序列,并将各种实例的输出提供为随后的衍生神经网络的输入,因此以比定义的多个输入更长的输入序列操作RNN。 RNN可以包括细胞。转换RNN可以包括识别非因果操作的每个小区,其独立于小区的输入来执行,以及用于并行处理的小区上的衍生神经网络在电池中分组非因果操作,例如,作为单一的卷积操作。硬件可以包括具有适于执行卷积操作的处理器的加速器。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号