首页> 外文期刊>IEEE Transactions on Neural Networks >Multiperiodicity and Attractivity of Delayed Recurrent Neural Networks With Unsaturating Piecewise Linear Transfer Functions
【24h】

Multiperiodicity and Attractivity of Delayed Recurrent Neural Networks With Unsaturating Piecewise Linear Transfer Functions

机译:具有不饱和分段线性传递函数的时滞递归神经网络的多周期和吸引性

获取原文
获取原文并翻译 | 示例

摘要

This paper studies multiperiodicity and attractivity for a class of recurrent neural networks (RNNs) with unsaturating piecewise linear transfer functions and variable delays. Using local inhibition, conditions for boundedness and global attractivity are established. These conditions allow coexistence of stable and unstable trajectories. Moreover, multiperiodicity of the network is investigated by using local invariant sets. It shows that under some interesting conditions, there exists one periodic trajectory in each invariant set which exponentially attracts all trajectories in that region correspondingly. Simulations are carried out to illustrate the theories.
机译:本文研究了一类具有不饱和分段线性传递函数和可变时滞的递归神经网络(RNN)的多周期性和吸引性。使用局部抑制,确定了有界和全局吸引性的条件。这些条件允许稳定和不稳定的轨迹并存。此外,通过使用局部不变集来研究网络的多周期性。它表明,在某些有趣的条件下,每个不变集合中都存在一个周期性的轨迹,该轨迹以指数方式相应地吸引了该区域中的所有轨迹。通过仿真来说明这些理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号