首页> 外文期刊>Neural computation >Analysis of Cluttered Scenes Using an Elastic Matching Approach for Stereo Images
【24h】

Analysis of Cluttered Scenes Using an Elastic Matching Approach for Stereo Images

机译:使用弹性匹配方法对立体图像进行杂乱场景分析

获取原文
获取原文并翻译 | 示例

摘要

We present a system for the automatic interpretation of cluttered scenes containing multiple partly occluded objects in front of unknown, complex backgrounds. The system is based on an extended elastic graph matching algorithm that allows the explicit modeling of partial occlusions. Our approach extends an earlier system in two ways. First, we use elastic graph matching in stereo image pairs to increase matching robustness and disambiguate occlusion relations. Second, we use richer feature descriptions in the object models by integrating shape and texture with color features. We demonstrate that the combination of both extensions substantially increases recognition performance. The system learns about new objects in a simple one-shot learning approach. Despite the lack of statistical information in the object models and the lack of an explicit background model, our system performs surprisingly well for this very difficult task. Our results underscore the advantages of view-based feature constellation representations for difficult object recognition problems.
机译:我们提出了一种自动解释混乱场景的系统,该场景在未知,复杂的背景下包含多个部分被遮挡的对象。该系统基于扩展的弹性图匹配算法,该算法允许对部分遮挡进行显式建模。我们的方法通过两种方式扩展了早期的系统。首先,我们在立体图像对中使用弹性图匹配,以增加匹配的鲁棒性并消除歧义。其次,通过将形状和纹理与颜色特征集成在一起,我们在对象模型中使用了更丰富的特征描述。我们证明这两个扩展的组合大大提高了识别性能。该系统以一种简单的一次性学习方法来学习新对象。尽管对象模型中缺少统计信息且缺少显式背景模型,但我们的系统对于这一非常困难的任务却表现出令人惊讶的良好性能。我们的结果强调了基于视图的特征星座表示的优势,可解决困难的对象识别问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号