首页> 外文期刊>Multimedia Tools and Applications >A next best view method based on self-occlusion information in depth images for moving object
【24h】

A next best view method based on self-occlusion information in depth images for moving object

机译:基于深度图像中自遮挡信息的运动物体的次佳观看方法

获取原文
获取原文并翻译 | 示例

摘要

The determination of next best view of a camera for moving object has wide application in dynamic object scenario, such as unmanned aerial vehicle and automatic recognition. The major challenge of this problem is how to determine the next best view while the visual object is moving. In this work, a novel next best view method based on self-occlusion information in depth images of moving object is proposed. Firstly, a depth image of moving object is acquired and self-occlusion detection is utilized in the acquired image. On this basis, the self-occlusion regions are modeled by utilizing space quadrilateral subdivision. Secondly, according to the modeling result, a method based on the idea of mean shift is proposed to calculate the result of self-occlusion avoidance corresponding to the current object. Thirdly, the second depth image of moving object is acquired, and the feature points in two images are detected and matched, then the 3D motion estimation is accomplished by the 3D coordinates of feature points which are matched. Finally, the next best view is determined by combining the result of self-occlusion avoidance and 3D motion estimation. Experimental results validate that the proposed method is feasible and has relatively high real-time performance.
机译:确定运动物体的摄像机的下一个最佳视角在动态物体场景中具有广泛的应用,例如无人机和自动识别。这个问题的主要挑战是在视觉对象移动时如何确定下一个最佳视图。在这项工作中,提出了一种新的基于自遮挡信息的运动物体深度图像的次佳观看方法。首先,获取运动物体的深度图像,并且在所获取的图像中利用自遮挡检测。在此基础上,利用空间四边形细分对自遮挡区域进行建模。其次,根据建模结果,提出一种基于均值漂移思想的方法,计算出当前目标对应的自闭塞避免结果。第三,获取运动物体的第二深度图像,检测并匹配两个图像中的特征点,然后通过匹配的特征点的3D坐标进行3D运动估计。最后,通过结合自我遮挡避免和3D运动估计的结果来确定下一个最佳视图。实验结果证明,该方法是可行的,具有较高的实时性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号