首页> 外文期刊>Mathematical Problems in Engineering >Dynamic Self-Occlusion Avoidance Approach Based on the Depth Image Sequence of Moving Visual Object
【24h】

Dynamic Self-Occlusion Avoidance Approach Based on the Depth Image Sequence of Moving Visual Object

机译:基于运动视觉对象深度图像序列的动态自遮挡避免方法

获取原文
获取原文并翻译 | 示例

摘要

How to avoid the self-occlusion of a moving object is a challenging problem. An approach for dynamically avoiding self-occlusion is proposed based on the depth image sequence of moving visual object. Firstly, two adjacent depth images of a moving object are acquired and each pixel's 3D coordinates in two adjacent depth images are calculated by utilizing antiprojection transformation. On this basis, the best view model is constructed according to the self-occlusion information in the second depth image. Secondly, the Gaussian curvature feature matrix corresponding to each depth image is calculated by using the pixels' 3D coordinates. Thirdly, based on the characteristic that the Gaussian curvature is the intrinsic invariant of a surface, the object motion estimation is implemented by matching two Gaussian curvature feature matrices and using the coordinates' changes of the matched 3D points. Finally, combining the best view model and the motion estimation result, the optimization theory is adopted for planning the camera behavior to accomplish dynamic self-occlusion avoidance process. Experimental results demonstrate the proposed approach is feasible and effective.
机译:如何避免运动物体的自闭塞是一个具有挑战性的问题。基于运动视觉对象的深度图像序列,提出了一种动态避免自遮挡的方法。首先,获取运动物体的两个相邻深度图像,并利用反投影变换来计算两个相邻深度图像中每个像素的3D坐标。在此基础上,根据第二深度图像中的自遮挡信息构建最佳观看模型。其次,通过使用像素的3D坐标来计算与每个深度图像相对应的高斯曲率特征矩阵。第三,基于高斯曲率是表面的固有不变性的特征,通过匹配两个高斯曲率特征矩阵并利用匹配的3D点的坐标变化来实现物体运动估计。最后,结合最佳视图模型和运动估计结果,采用优化理论对摄像机的行为进行规划,以完成动态自遮挡避免过程。实验结果证明了该方法的可行性和有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第10期|4783794.1-4783794.11|共11页
  • 作者单位

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe, Qinhuangdao 066004, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号