首页> 外文期刊>Microelectronics & Reliability >Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits
【24h】

Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits

机译:BTI导致的数字电路寿命退化的工作量和温度相关评估

获取原文
获取原文并翻译 | 示例

摘要

In this work, we investigate the co-dependency of die temperature and bias temperature instability (BTI) and their combined effect on the lifetime of VLSI circuits. The investigation considers the impact of die temperature in increasing the effect of the BTI as well as changes in the die temperature due to the BTI-induced threshold voltage alterations. In addition, the impact of workloads on the degree of the BTI-induced degradation in VLSI circuits is studied. This impact accounts for the direct influence of the signal probability of the internal nodes under the given workload as well as its indirect influence due to power consumption and temperature changes of the circuits. The study is performed by using a simulation framework that captures dynamic changes in the operating temperature and application workload. Simultaneous consideration of the dynamic workload and operating temperature enables one to accurately predict the circuit lifetime. To assess the accuracy of the proposed approach, the estimated delay degradations caused by the Negative BTI (NBTI) for some large circuits from ISCAS'89 and ITC'99 benchmark suites when circuits are simulated under dynamic (both temperature and workload are updated periodically), semi-static (either temperature or workload is updated periodically), and static (no updating is performed) scenarios are compared. Simulation results obtained in a 45 nm CMOS technology, reveal that the predicted timing degradation in the case of the dynamic scenario is significantly different than those of the other scenarios. The differences ranged from -135% to +98% for the considered circuits in this work. The large differences demonstrate that for accurate estimation of the circuit lifetime under the BTI effect, the dynamic scenario should be adopted as part of the standard design flows. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们研究了芯片温度和偏置温度不稳定性(BTI)的相互依赖性以及它们对VLSI电路寿命的综合影响。研究考虑了芯片温度对提高BTI效果的影响,以及由于BTI引起的阈值电压变化而导致芯片温度的变化。此外,还研究了工作负载对VLSI电路中BTI引起的退化程度的影响。这种影响说明了在给定工作负载下内部节点的信号概率的直接影响,以及由于功耗和电路温度变化导致的间接影响。该研究是通过使用模拟框架进行的,该框架捕获了工作温度和应用程序工作负载中的动态变化。同时考虑动态工作量和工作温度,使人们能够准确预测电路寿命。为了评估所提出方法的准确性,当对电路进行动态仿真时(温度和工作量均定期更新),对于ISCAS'89和ITC'99基准套件中的某些大型电路,由负BTI(NBTI)引起的估计延迟退化估计为比较半静态(温度或工作负荷会定期更新)和静态(不执行更新)方案。在45 nm CMOS技术中获得的仿真结果表明,在动态场景下,预测的时序退化与其他场景下的显着不同。对于这项工作中所考虑的电路,差异范围为-135%至+ 98%。较大的差异表明,为了在BTI效应下准确估计电路寿命,应采用动态方案作为标准设计流程的一部分。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号