首页> 外文期刊>IEEE transactions on device and materials reliability >Investigation of Hot-Carrier Degradation in 0.18- μ m MOSFETs for the Evaluation of Device Lifetime and Digital Circuit Performance
【24h】

Investigation of Hot-Carrier Degradation in 0.18- μ m MOSFETs for the Evaluation of Device Lifetime and Digital Circuit Performance

机译:0.18μMMOSFET中热载波降解的研究,用于评估装置寿命和数字电路性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this work, we investigate the hot-carrier reliability in 0.18 mu m MOSFET technology that is being extensively employed in various analog/digital applications. Hot-carrier degradation in MOSFETs is known to follow power-law relation where the time exponent of the degradation curve can be utilized to quantify the device ageing. Here, we examine the dependency of time power-law exponent on different gate stress bias to determine the physical mechanism responsible for device degradation. Extensive consideration is given to the maximum impact ionization condition Vgs=Vds/2 and maximum hot-electron injection condition Vgs=Vds. Time evolution of degradation curve depicts changing slope with increasing stress duration. This variation in time power-law exponent over different stress time intervals is an important indicator of changing degradation mechanism as the device ages. Since the operating conditions for a device directly relates to its targeted application, therefore DC lifetime prediction under the influence of different Vgs/Vds stress bias combinations is performed to determine the limiting case challenging the circuit integrity. Also, the impact of hot-carrier degradation on the circuit delay under the aforementioned stress conditions is evaluated for typical digital CMOS circuits. Effective switching current methodology is employed for the delay analysis in transistor stacks that comprise inverter, NAND, and NOR circuits to show the adverse effects of the damage caused by the hot-carriers.
机译:在这项工作中,我们研究了在各种模拟/数字应用中广泛使用的0.18 MU M MOSFET技术中的热载波可靠性。已知MOSFET中的热载流子降解遵循劣化曲线的时间指数来遵循幂律关系,以定量装置老化。在这里,我们研究时间幂律指数在不同栅极应力偏压上的依赖性,以确定负责设备劣化的物理机制。广泛考虑最大碰撞电离条件VGS = VDS / 2以及最大热电子注入条件VGS = VDS。降解曲线的时间演化描绘了随着应力持续时间的增加而变化的斜率。随着时间间隔的时间幂律指数的这种变化是改变降解机制作为设备年龄的重要指标。由于设备的操作条件直接涉及其目标应用,因此执行在不同VGS / VDS应力偏压组合的影响下的DC寿命预测以确定挑战电路完整性的限制壳体。而且,对典型的数字CMOS电路评估了在上述应力条件下的电路延迟对电路延迟的影响。有效的开关电流方法用于延迟分析,其包括逆变器,NAND和NOR电路的晶体管堆叠,以显示由热载体引起的损坏的不利影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号