首页> 外文期刊>Microelectronics & Reliability >Effect of alternating current (AC) stressing on the microstructure and mechanical properties of low-silver content solder interconnect
【24h】

Effect of alternating current (AC) stressing on the microstructure and mechanical properties of low-silver content solder interconnect

机译:交流电应力对低银含量焊料互连的微观结构和机械性能的影响

获取原文
获取原文并翻译 | 示例

摘要

The low-cost low-silver-content solder is receiving high attention while its reliability is not well studied. In this work, a copper/tin-silver-copperickel (Cu/Sn0.3Ag0.7Cu/Ni) line-type solder interconnect was designed for investigation of the effect of alternating current (AC) on the microstructure and mechanical properties. Three dimensional (3D) X-ray microcomputed tomography tests showed voids and protruding IMCs formed in the solder/Ni and solder/Cu interface regions of the interconnect after prolonged AC stressing, respectively. The thickness growth of interfacial IMC layers followed linear laws with faster rates than those in thermal aged sample. Atomic migration of Cu atoms in Sn0.3Ag0.7Cu solder was estimated using mathematical models with a thermal gradient of 206.77 degrees C cm(-1). Significant degradation in mechanical properties happened. Nano-indentation results showed the hardness and elastic modulus in different solder areas were in the following order: central solder solder near solder/Ni interface solder near solder/Cu interface. Four mechanisms can be used to explain these results of AC damages: 1) elevated temperature due to Joule heating, which enhanced grain coarsening and dislocations redistribution; 2) thermal fatigue due to cyclic loading, which damaged the interconnect strength by accumulated stress induced by mismatch in the coefficients of thermal expansion; 3) thermo-migration due to thermal gradient from Ni side to Cu side, which released the thermal stress at the solder/Ni interface and prevented further deterioration, while increasing the thermal stress at the solder/Cu interface and deteriorated the mechanical strength; 4) atomic migration due to chemical gradient, which induced the mass redistribution and contribute to the growth of IMCs layers.
机译:低成本,低银含量的焊料受到了广泛关注,但其可靠性尚未得到充分研究。在这项工作中,设计了铜/锡-银-铜/镍(Cu / Sn0.3Ag0.7Cu / Ni)线型焊料互连,以研究交流电(AC)对微观结构和机械性能的影响。三维(3D)X射线微计算机断层扫描测试显示,在长时间的交流电应力作用下,分别在互连的焊料/镍和焊料/铜界面区域中形成了空隙和突出的IMC。界面IMC层的厚度增长遵循线性定律,其速率要快于热老化样品中的线性定律。使用数学模型估算了Sn0.3Ag0.7Cu焊料中Cu原子的原子迁移,该数学模型的热梯度为206.77℃cm(-1)。发生了机械性能的显着降低。纳米压痕结果表明,不同焊料区域的硬度和弹性模量按以下顺序排列:中心焊料>靠近焊料/ Ni界面的焊料>接近焊料/ Cu界面的焊料。可以使用四种机制来解释AC损伤的这些结果:1)焦耳热导致温度升高,这会增强晶粒粗化和位错重新分布; 2)循环载荷引起的热疲劳,由于热膨胀系数不匹配而引起的累积应力破坏了互连强度; 3)由于从Ni侧到Cu侧的热梯度引起的热迁移,释放了焊料/ Ni界面处的热应力并防止了进一步的劣化,同时增加了焊料/ Cu界面处的热应力并降低了机械强度; 4)由于化学梯度导致的原子迁移,从而引起质量重新分布,并有助于IMC层的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号