首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Adaptive Filtering for Robust Proprioceptive Robot Impact Detection Under Model Uncertainties
【24h】

Adaptive Filtering for Robust Proprioceptive Robot Impact Detection Under Model Uncertainties

机译:模型不确定性下自适应滤波的鲁棒本体感觉机器人碰撞检测

获取原文
获取原文并翻译 | 示例

摘要

In the context of safe human–robot physical interaction, this paper introduces a new method for the detection of dynamic impacts of flexible-joint robot manipulators with their environment. The objective is to detect external impacts applied to the robot using only proprioceptive information with maximal sensitivity. Several model-based detection methods in robotics are based on the difference, called residual, between the estimated and the actual applied torques. Sensitivity of such methods can be limited by model uncertainties that originate either from errors on experimentally identified model parameters, possibly varying with the operating conditions, or the use of simplified models, which results in a residual dependence on the robot’s state. The main contribution of this paper consists of a new adaptive residual evaluation method that takes into account this dependence, which otherwise can lead to a tradeoff between sensitivity and false alarm rate. The proposed approach uses only proprioceptive motor-side measurements and does not require any additional joint position sensors or force/torque sensors. Dynamic effects of a collision on the residual are isolated using bandpass filtering and comparison with a state-dependent dynamic threshold. Adaptive online estimation of filter coefficients avoids the need for extensive experiments for parametric model identification. Experimental evaluation on the CEA backdrivable ASSIST robot arm illustrates the enhancement of the detection sensitivity.
机译:在安全的人机交互过程中,本文介绍了一种新的方法来检测柔性关节机械手及其周围环境的动态影响。目的是仅使用具有最大灵敏度的本体感受信息来检测施加到机器人的外部冲击。机器人技术中几种基于模型的检测方法均基于估计扭矩与实际施加扭矩之间的差异(称为残差)。此类方法的敏感性可能会受到模型不确定性的限制,这些不确定性可能源自实验确定的模型参数的误差(可能会随操作条件而变化),也可能源自简化模型的使用,从而导致对机器人状态的残留依赖性。本文的主要贡献包括一种新的自适应残差评估方法,该方法考虑了这种依赖性,否则可能导致灵敏度与误报率之间进行权衡。所提出的方法仅使用本体感受电机侧测量,并且不需要任何其他的关节位置传感器或力/扭矩传感器。使用带通滤波并与状态相关的动态阈值进行比较,可以隔离碰撞对残差的动态影响。滤波器系数的自适应在线估计避免了为进行参数模型识别而进行大量实验的需要。对CEA可反向驱动的ASSIST机器人手臂的实验评估说明了检测灵敏度的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号