首页> 外文期刊>Mechanical systems and signal processing >Hyper-spherical distance discrimination: A novel data description method for aero-engine rolling bearing fault detection
【24h】

Hyper-spherical distance discrimination: A novel data description method for aero-engine rolling bearing fault detection

机译:超球面距离判别:航空发动机滚动轴承故障检测的新数据描述方法

获取原文
获取原文并翻译 | 示例

摘要

A novel method called hyper-spherical distance discrimination (HDD) is proposed in order to meet the requirement of aero-engine rolling bearing on-line monitoring. In proposed method, original multi-dimensional features extracted from vibration acceleration signal are transformed to the same dimensional reconstructed features by de-correlation and normalization while the distribution of feature vectors is transformed from hyper-ellipsoid to hyper-sphere. Then, a simple model built up by distance discriminant analysis is used for rolling bearing fault detection and degradation assessment. HDD is compared with the support vector data description (SVDD) and the self-organizing map (SOM) in rolling bearing fault simulation experiments. The results show that the HDD method is superior to the SVDD and SOM in terms of recognition rate. Besides, HDD is applied to a run-to-failure test of aero-engine rolling bearing. It proves that the evaluating indicator obtained by HDD method is able to reflect the degradation tendency of rolling bearing, and it is also more sensitive to initial fault than the root mean square (RMS) of vibration acceleration signal. With the advantages of low computational complexity and no need to tuning parameters, HDD method can be applied to practical engineering effectively.
机译:为了满足航空发动机滚动轴承在线监测的要求,提出了一种称为超球面距离判别(HDD)的新方法。在该方法中,从振动加速度信号中提取的原始多维特征通过去相关和归一化变换为相同维的重构特征,而特征矢量的分布从超椭球体变换为超球体。然后,将通过距离判别分析建立的简单模型用于滚动轴承故障检测和退化评估。在滚动轴承故障模拟实验中,将HDD与支持向量数据描述(SVDD)和自组织映射(SOM)进行了比较。结果表明,HDD方法在识别率方面优于SVDD和SOM。此外,HDD还应用于航空发动机滚动轴承的运行至失败测试。证明了通过HDD方法获得的评估指标能够反映滚动轴承的退化趋势,并且比振动加速度信号的均方根(RMS)对初始故障更敏感。 HDD方法具有计算复杂度低,无需调整参数的优点,可以有效地应用于实际工程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号