首页> 中国专利> 基于动态半径支持向量数据描述的航空发动机故障检测方法

基于动态半径支持向量数据描述的航空发动机故障检测方法

摘要

本发明提供一种基于动态半径支持向量数据描述的航空发动机故障检测方法,本发明考虑了在构建SVDD单分类模型时超球面的动态变化,在核空间中引入角度这一参数,可以为每个样本都选择一个合适的分类边界,据此搭建而成的一个效果优良的分类器,极大的提升了原算法的精度以及鲁棒性。本算法适用于中小规模的分类问题,可以在航空发动机故障检测方面有良好的表现。当航空发动机因为磨损、腐蚀、堵塞等原因而发生故障时,相应部件的健康参数会发生改变,当正常数据中掺杂着不同程度的故障数据时,本发明可以在混入故障数据的情况下,以优良的性能继续识别故障数据,可以有效提高工作效率。

著录项

  • 公开/公告号CN112733872A

    专利类型发明专利

  • 公开/公告日2021-04-30

    原文格式PDF

  • 申请/专利权人 南京航空航天大学;

    申请/专利号CN202010874448.1

  • 发明设计人 赵永平;谢云龙;叶志锋;

    申请日2020-08-26

  • 分类号G06K9/62(20060101);G06N20/20(20190101);G01M15/14(20060101);G01M15/02(20060101);

  • 代理机构32249 南京瑞弘专利商标事务所(普通合伙);

  • 代理人秦秋星

  • 地址 210016 江苏省南京市秦淮区御道街29号

  • 入库时间 2023-06-19 10:48:02

说明书

技术领域

本发明针对航空发动机的故障检测,用支持向量数据描述(Support Vector DataDescription)改进算法解决航空发动机部件故障检测精度低、鲁棒性差的问题。

背景技术

航空发动机是每一架飞机的动力核心,它的安全一直牵动着人们的心弦,一旦它出现问题,那么将直接对人民的财产安全乃至生命安全造成巨大的威胁。但是由于其 结构的复杂性、严格要求的精密性,以及工作环境的恶劣性,主要部件极其容易发生 故障,并且对其的直接维修成本已经达到了对飞机整体维修的50%,甚至更多,如果 每次都直接对航空发动机进行维修,将会对航空公司的经济利益产生巨大不必要的损 失。那么一种既可以准确检测航空发动机的故障发生情况,同时又尽可能的节省经济 效益的方法研究,将会对航空发动机的健康安全管理有着重大意义,所以航空发动机 的故障检测技术已经成为国内外研究的一项重要课题。

根据调查研究,航空发动机出现的90%以上的故障都是气路故障。气路故障检测迄今为止主要有三种方法:基于知识的方式,但是这过于依赖专家的过往经验,不适 用于现代发动机日新月异的飞速发展中出现的新的故障类型;基于物理模型的方法, 比如采用观测器和采用卡尔曼滤波器的检测方法,但是由于搭建物理模型需要发动机 的准确部件特性,随着发动机技术的不断更新进步,这往往也限制了该方法的发展; 基于数据的方法,比如利用支持向量机(Support Vector Machine,简称SVM)以及利用 人工神经网络(Artificial Neural Network,简称ANN)的智能检测方法,这在检测效率和 检测精度上有了不同程度的进步,检测成本也得到了有效控制,为今后的研究打下了 坚实的基础。

ANN是模拟人脑的运行机制而产生的一种人工智能算法,它由多个节点组成,一个节点相当于一个神经元,每个节点可以有一个输入或者多个输入,两个相邻层之间 的节点实现全连接,并通过权重和阙值来传递消息。误差反向传播算法(error BackPropagation,简称BP)是人工神经网络的一种典型算法,它利用误差来控制前一层的 权重和阙值,不断逼近我们所需要的传递关系,理论上可以拟合所有的非线性函数, 但是它容易陷入局部最优从而偏离全局最优,并且收敛速度较慢。极限学习机 (Extreme LearningMachine,简称ELM)是另一种人工神经网络算法,相较于BP来说, 它的权值是通过随机设定和解方程组来获得,不需要不断反向去更新权值与阙值,这 就大大缩减了训练时间,同时也拥有良好的泛化性能,但是这种方法往往会出现过拟 合的风险。

支持向量数据描述(Support Vector Data Description,简称SVDD)是1999年Tax和 Duin在SVM的基础上提出的,它通过寻找一个最小超球面来包围尽可能多的数据, 将超球面外面的数据判定为故障数据,超球面以内则为正常数据,从而达到分类的效 果。当训练样本只有一类时,SVDD模型能够很好的识别异常数据。由于航空发动机 故障数据获得的成本较大,所以只需要正常数据就可以进行故障检测的SVDD算法被 广泛应用。但是传统SVDD将超球面的分界半径视为一个固定值,没有考虑到它的动 态变化,对于不同的测试数据来说,这是不妥的,为此我们提出一种基于新的动态半 径支持向量数据描述(DynamicRadius Support Vector Data Description,简称DR-SVDD) 的航空发动机故障检测方法,来解决这个问题。

发明内容

发明目的:为了克服传统SVDD因没有考虑超球面的动态变化,将超球面的分界 半径作为一个固定值,从而导致的分类精度低、鲁棒性差问题,在特征空间中引入角 度的变化,为每个测试数据选取特定的重要决策数据,来达到提高检测精度以及鲁棒 性的目的。

技术方案:

一种基于动态半径支持向量数据描述的航空发动机故障检测方法,可以根据不同测试样本选择不同的决策值,包括如下步骤:

步骤1:建立支持向量数据描述模型:

其中x

构造Lagrange函数:

其中,α

消去公式中的γ

通过将公式(6)最大化,得出α=[α

超球面的半径R被计算为:

其中,x

测试样本到中心的距离:

其中z代表测试样本;

步骤2:在特征空间中计算测试样本与每个训练样本围绕中心的角度:

其中,θ

步骤3:为了选取测试样本z的决策数据,引入一个角度Θ,当有训练数据符合

步骤4:将挑选出来z的决策数据{x

步骤5:根据测试样本z的重要决策数据,来确定z的阈值:

其中,R

步骤6:判定测试样本z的类别:

f(z)=sign(R

其中,d

上述算法在航空发动机故障检测中的应用(以T700涡轴发动机为例),包括如下步骤:

步骤1:在全飞行包线范围内,采集航空发动机各部件正常状态下的样本,记为 正类样本,以及故障状态下的参数样本,记为负类样本,以压气机流量退化、压气机 效率退化、燃气涡轮流量退化、燃气涡轮效率退化、动力涡轮流量退化、动力涡轮效 率退化六种故障作为检测;

步骤2:将样本归一化后,将正常样本混合部分离群值作为训练样本训练动态半径支持向量数据描述(DR-SVDD);

步骤3:用DR-SVDD对航空发动机各部件进行故障检测。

有益效果:本发明通过改进后的支持向量数据描述对航空涡轴发动机进行故障检测,极大的提升了检测效果,实现了对发动机故障更精准的检测。相对于现有的故障 检测方法而言,本发明具有以下优点:

1、提出了航空发动机故障检测的一种新方法和新思路;

2、方法易于理解,且算法的参数调整简单;

3、方法易于实现,实用性强,可实现高精度检测。

附图说明

图1为DR-SVDD的算法流程图;

图2为某型涡轴发动机的截面示意图;

图3为实验案例结果示意图。

具体实施方式

在航空发动机故障检测中,正常样本与故障样本的获取代价是不同的,所以当只需正常样本就可以完成故障检测的方式是极受欢迎的,鉴于此施行以下步骤:

步骤1:建立数学模型:

其中x

构造Lagrange函数:

其中,α

消去公式中的γ

通过将公式(6)最大化,得出α=[α

超球面的半径R被计算为:

其中,x

测试样本到中心的距离:

其中z代表测试样本;

步骤2:在特征空间中计算测试样本与每个训练样本围绕中心的角度:

其中,θ

步骤3:为了选取测试样本z的决策数据,引入一个角度Θ,当有训练数据符合

步骤4:将挑选出来z的决策数据{x

步骤5:根据测试样本z的重要决策数据,来确定z的阈值:

其中,R

步骤6:判定测试样本z的类别:

f(z)=sign(R

其中,d

下面,给出DR-SVDD算法的流程图:

本实验选择Radial-Basis Function(RBF)核函数

本发明用于T700涡轴发动机做测试,如图2所示,该发动机主要部件包括进气道,压气机(Compressor)、燃烧室(Combustor)、燃气涡轮(Gas Turbine,简称GT),动力 涡轮(Power Turbine,简称PT)和尾喷管。其中3表示压气机出口,42表示燃气涡轮出 口,5表示动力涡轮出口。低压气流经进气道和传送装置流入压气机,通过压气机压缩后 转变为高压气流。在燃烧室内,燃油喷入并和高压气体混合燃烧形成混合气,混合气流经 燃气涡轮和动力涡轮时,通过高压轴和低压轴分别带动相连的压气机和传送装置(为尾桨 和旋翼提供动力)的转动。最终热气以高速排入大气中。

与航空发动机转子相连的压气机、GT和PT在高转速下易发生故障,因此仅考虑 这三个部件出现的故障,并分别以流量和效率的退化模拟各部件故障的发生。实验前 收集全飞行包线的仿真数据,其中包含2020个正常状态样本,2000个压气机流量退 化的故障样本、1980个压气机效率退化的故障样本、2000个GT流量退化的故障样本、 2000个GT效率退化的故障样本、2000个PT流量退化的故障样本和2000个PT效率 退化的故障样本。把正常状态归为正类,标签为+1,其余故障归为负类,标签为-1。 每个样本有11维,分别是飞行高度、飞行马赫数、GT输出轴转速、PT输出轴转速、 T3、P3、T42、P42、T5、P5和燃油流量,其中T3表示压气机出口温度,P3表示压气 机出口压力,其余参数是依照相同的规则命名。为了验证6种故障情况下的检测性能, 在训练样本中加入2%和5%的离群值。实验前对样本归一化处理。

从表1和表2中可以看出,DR-SVDD在涡轴发动机气路故障检测方面优于其它比 较算法。DH-SVDD虽然也考虑了构建超球面的动态变化,但是它对离群值特别敏感, 导致效果最差,同时它的训练时间和测试时间也最长,说明它的计算复杂度很高,这 不利于航空发动机的故障检测。对于VR-SVDD、maxR-SVDD和SVDD,它们的训练 和测试时间相近,说明它们拥有较低的训练复杂度,但是它们的代价是在精度上不如 DR-SVDD。除此之外,图3展示了随着离群值在训练集中占比增加时G-mean值的变 化情况,可以看出,DR-SVDD依然占据着相当大的优势,这更加证明了所提出的方 法确实提高了航空发动机的故障检测性能。

表1:在2%离群值水平下的航空发动机检测结果

注:每组实验数据独立重复10次,取其均值作为结果,并与括号内备注标准差。

表2:在5%离群值水平下的航空发动机检测结果

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号