首页> 外文期刊>Journal of visual communication & image representation >Quality assessment of retargeted images by salient region deformity analysis
【24h】

Quality assessment of retargeted images by salient region deformity analysis

机译:通过显着区域变形分析对重定目标图像进行质量评估

获取原文
获取原文并翻译 | 示例

摘要

Displaying images on different devices, requires resizing of the media. Traditional image resizing methods result in quality degradation. Content-aware retargeting algorithms aim to resize images for displaying them on a new device with the goal of preserving important contents of the image. Quality assessment of retargeted images can be employed to choose among outputs of different retargeting methods or help the optimization of such methods. In this paper we propose a learning based quality assessment method for retargeted images. An optical flow algorithm is used to find the correspondence between regions in the scaled and retargeted images. Three groups of features are defined to cover different aspects of distortions that are important to human observers. Area related features are used to detect how the areas of salient regions are retained and how much geometrical deformities are produced in the image. Also, to better assess the retargeted image we introduce features to show how well the aspect ratios of objects are retained. More importantly, we introduce the concept of measuring the homogeneity of distribution of deformities throughout the image. Experimental results demonstrate that our quality estimation method has better correlation with subjective scores and outperforms existing methods. (C) 2016 Elsevier Inc. All rights reserved.
机译:在不同设备上显示图像需要调整媒体大小。传统的图像调整大小方法会导致质量下降。内容感知重定位算法旨在调整图像大小,以将其显示在新设备上,以保留图像的重要内容。可以使用重定目标图像的质量评估来选择不同重定目标方法的输出,或帮助优化此类方法。在本文中,我们提出了一种针对重定位图像的基于学习的质量评估方法。使用光流算法来查找缩放图像和重新定向图像中区域之间的对应关系。定义了三组特征,以涵盖对人类观察者重要的变形的不同方面。区域相关特征用于检测显着区域的面积如何保留以及图像中产生多少几何变形。另外,为了更好地评估重新定向的图像,我们引入了一些功能来显示对象的纵横比保持得如何。更重要的是,我们引入了测量整个图像中变形分布的均匀性的概念。实验结果表明,我们的质量估计方法与主观评分具有更好的相关性,并且优于现有方法。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号