首页> 外文期刊>IEEE Transactions on Image Processing >Full Reference Quality Assessment for Image Retargeting Based on Natural Scene Statistics Modeling and Bi-Directional Saliency Similarity
【24h】

Full Reference Quality Assessment for Image Retargeting Based on Natural Scene Statistics Modeling and Bi-Directional Saliency Similarity

机译:基于自然场景统计建模和双向显着性相似度的图像重定向全参考质量评估

获取原文
获取原文并翻译 | 示例

摘要

Image retargeting technology has been widely studied to adapt images for the devices with heterogeneous screen resolutions. Meanwhile effective objective retargeting quality assessment algorithms are also very important for optimizing and selecting favorable retargeting methods. Unlike previous assessment algorithms which rely on image local structure features and unidirectional prediction of information loss, we propose a bi-directional natural salient scene distortion model (BNSSD) including image natural scene statistics (NSS) measurement, salient global structure distortion measurement, and bi-directional salient information loss measurement. First, we propose a new NSS model in log-Gabor domain and verify its effectiveness in reflecting nature scene statistical distortions introduced during the retargeting process. Second, the concept of salient global structure distortion is proposed to measure the global structure uniformity in the corresponding salient regions between original and retargeted images. Finally, we propose a bidirectional salient information loss metric to measure the information loss between salient areas in original image and retargeted image. The effectiveness of the BNSSD model is verified on two widely recognized public databases, and the experimental results show that our method outperforms the state-of-the-art algorithms under different statistical assessment criteria.
机译:图像重新定向技术已被广泛研究,以使图像适应具有异构屏幕分辨率的设备。同时,有效的目标重定目标质量评估算法对于优化和选择有利的重定目标方法也非常重要。与以前的依赖图像局部结构特征和信息丢失的单向预测的评估算法不同,我们提出了一种双向自然显着场景失真模型(BNSSD),其中包括图像自然场景统计(NSS)测量,显着全局结构失真测量和bi方向显着信息损失测量。首先,我们在log-Gabor域中提出了一个新的NSS模型,并验证了其在反映重新定位过程中引入的自然场景统计失真方面的有效性。其次,提出了显着整体结构畸变的概念,以测量原始图像和重定目标图像之间相应显着区域中的整体结构均匀性。最后,我们提出了一种双向显着信息损失度量,用于度量原始图像和重定目标图像中显着区域之间的信息损失。在两个公认的公共数据库上验证了BNSSD模型的有效性,实验结果表明,在不同的统计评估标准下,我们的方法优于最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号