首页> 外文期刊>Journal of symbolic computation >Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities
【24h】

Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities

机译:多项式不等式定义的区域上完整函数积分的算法

获取原文
获取原文并翻译 | 示例

摘要

A holonomic function is a differentiabte or generalized function which satisfies a hofortomic system of linear partial or ordinary differential equations with polynomial coefficients. The main purpose of this paper is to present algorithms for computing a holonomic system for the definite integral of a holonomic function with parameters over a domain defined by polynomial inequalities. If the integrand satisfies a holonomic difference-differential system including parameters, then a holonomic difference-differential system for the integral can also be computed. In the algorithms, holonomic distributions (generalized functions in the sense of L. Schwartz) are inevitably involved even if the integrand is a usual function.
机译:完整函数是微分或广义函数,它满足具有多项式系数的线性偏微分方程或常微分方程的齐整系统。本文的主要目的是提出用于计算完整系统的算法的完整系统,该系统具有由多项式不等式定义的域上的参数的完整函数的确定积分。如果被积数满足包括参数的完整差分系统,那么也可以计算出完整的完整差分系统。在算法中,即使被积物是通常的函数,也不可避免地涉及完整分布(L. Schwartz的广义函数)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号