首页> 外文期刊>Journal of symbolic computation >Formalizing polygonal knot origami
【24h】

Formalizing polygonal knot origami

机译:正式化多边形结折纸

获取原文
获取原文并翻译 | 示例

摘要

We present computer-assisted construction of regular polygonal knots by origami. The construction is completed with an automated proof based on algebraic methods. Given a rectangular origami or a finite tape, of an adequate length, we can construct the simplest knot by three folds. The shape of the knot is made to be a regular pentagon if we fasten the knot tightly without distorting the tape. We perform the analysis of the knot fold further formally towards the automated construction and verification. In particular, we show the construction and proof of regular pentagonal and heptagonal knots. We employ a software tool called Eos (e-origami system), which incorporates the extension of Huzita's basic fold operations for construction, and Groebner basis computation for proving. Our study yields more mathematical rigor and in-depth results about the polygonal knots.
机译:我们介绍由折纸形成的计算机辅助的规则多边形结的构造。通过基于代数方法的自动证明来完成构造。给定一个足够长的矩形折纸或有限的带子,我们可以通过三折构造最简单的结。如果我们将结紧紧地固定而不使胶带变形,则将结的形状制成规则的五边形。我们进一步正式对结折叠进行分析,以实现自动化构造和验证。特别是,我们展示了规则五边形和七边形结的构造和证明。我们采用了称为Eos(电子折纸系统)的软件工具,该工具结合了Huzita的基本折叠操作的扩展功能以进行构造,并采用Groebner基础计算进行验证。我们的研究得出有关多边形结的更多数学严谨性和更深入的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号