机译:使用大几何裕度最小分类误差训练的鲁棒高效模式分类
National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;
Graduate School of Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan;
Graduate School of Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan;
Graduate School of Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan;
National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;
National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan;
Discriminative training; Minimum classification error training; Robustness to unseen samples;
机译:大利润率最小分类错误训练:理论上的风险最小化观点
机译:使用稀疏权重矩阵的基于示例的语音和模式识别中的最小分类错误训练
机译:改进的最小平方误差算法用于鲁棒分类和人脸识别实验
机译:具有几何裕度增强功能的最小分类错误训练,可实现可靠的模式识别
机译:语音识别和检测的最小分类错误(MCE)训练方法的概括。
机译:规范与药物错误相关的危害的危害:与药物错误分类相关的危害(HAMEC)
机译:基于样本分离余量的具有二阶判别函数的最小分类误差训练