首页> 外文期刊>Computer speech and language >Large-margin minimum classification error training: A theoretical risk minimization perspective
【24h】

Large-margin minimum classification error training: A theoretical risk minimization perspective

机译:大利润率最小分类错误训练:理论上的风险最小化观点

获取原文
获取原文并翻译 | 示例

摘要

Large-margin discriminative training of hidden Markov models has received significant attention recently. A natural and interesting question is whether the existing discriminative training algorithms can be extended directly to embed the concept of margin. In this paper, we give this question an affirmative answer by showing that the sigmoid bias in the conventional minimum classification error (MCE) training can be interpreted as a soft margin. We justify this claim from a theoretical classification risk minimization perspective where the loss function associated with a non-zero sigmoid bias is shown to include not only empirical error rates but also a margin-bound risk. Based on this perspective, we propose a practical optimization strategy that adjusts the margin (sigmoid bias) incrementally in the MCE training process so that a desirable balance between the empirical error rates on the training set and the margin can be achieved. We call this modified MCE training process large-margin minimum classification error (LM-MCE) training to differentiate it from the conventional MCE. Speech recognition experiments have been carried out on two tasks. First, in the TIDIGITS recognition task, LM-MCE outperforms the state-of-the-art MCE method with 17% relative digit-error reduction and 19% relative string-error reduction. Second, on the Microsoft internal large vocabulary telephony speech recognition task (with 2000 h of training data and 120 K. words in the vocabulary), significant recognition accuracy improvement is achieved, demonstrating that our formulation of LM-MCE can be successfully scaled up and applied to large-scale speech recognition tasks.
机译:隐马尔可夫模型的大幅度判别训练最近受到了极大的关注。一个自然而有趣的问题是,现有的判别训练算法是否可以直接扩展为嵌入边距的概念。在本文中,我们通过显示传统最小分类错误(MCE)训练中的S形偏差可以解释为软裕量,从而为该问题提供了肯定的答案。我们从理论上的分类风险最小化的角度证明了这一主张的合理性,在该观点中,与非零乙状结肠偏倚相关的损失函数不仅显示出经验误差率,还包括了边际约束风险。基于此观点,我们提出了一种实用的优化策略,该策略在MCE训练过程中逐步调整余量(S型偏差),以便在训练集上的经验错误率和余量之间实现理想的平衡。我们将这种经过改进的MCE训练过程称为大幅度最小分类错误(LM-MCE)训练,以将其与常规MCE区别开来。语音识别实验已在两项任务上进行。首先,在TIDIGITS识别任务中,LM-MCE相对于最新的MCE方法具有17%的相对数字错误减少和19%的相对字符串错误减少。其次,在Microsoft内部的大词汇量电话语音识别任务上(具有2000 h的训练数据和120 k。个单词),可以显着提高识别精度,这表明我们可以成功地扩展LM-MCE的公式并适用于大规模语音识别任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号