首页> 外文期刊>IEEE Transactions on Neural Networks >A novel multilayer neural networks training algorithm that minimizes the probability of classification error
【24h】

A novel multilayer neural networks training algorithm that minimizes the probability of classification error

机译:一种新颖的多层神经网络训练算法,可最大程度地降低分类错误的可能性

获取原文
获取原文并翻译 | 示例

摘要

A multilayer neural networks training algorithm that minimizes the probability of classification error is proposed. The claim is made that such an algorithm possesses some clear advantages over the standard backpropagation (BP) algorithm. The convergence analysis of the proposed procedure is performed and convergence of the sequence of criterion realizations with probability of one is proven. An experimental comparison with the BP algorithm on three artificial pattern recognition problems is given.
机译:提出了一种最小化分类错误概率的多层神经网络训练算法。声称这种算法相对于标准反向传播(BP)算法具有明显的优势。对提出的程序进行了收敛性分析,并证明了概率为1的准则实现序列的收敛性。在三个人工模式识别问题上与BP算法进行了实验比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号