首页> 外文期刊>Journal of Parallel and Distributed Computing >Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems
【24h】

Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems

机译:具有自适应控制参数的并行微分进化和基于对立的广义学习,用于解决高维优化问题

获取原文
获取原文并翻译 | 示例

摘要

Solving high-dimensional global optimization problems is a time-consuming task because of the high complexity of the problems. To reduce the computational time for high-dimensional problems, this paper presents a parallel differential evolution (DE) based on Graphics Processing Units (CPUs). The proposed approach is called GOjDE, which employs self-adapting control parameters and generalized opposition-based learning (GOBL). The adapting parameters strategy is helpful to avoid manually adjusting the control parameters, and GOBL is beneficial for improving the quality of candidate solutions. Simulation experiments are conducted on a set of recently proposed high-dimensional benchmark problems with dimensions of 100, 200, 500 and 1,000. Simulation results demonstrate that GjODE is better than, or at least comparable to, six other algorithms, and employing GPU can effectively reduce computational time. The obtained maximum speedup is up to 75.
机译:由于问题的高度复杂性,解决高维全局优化问题是一项耗时的任务。为了减少高维问题的计算时间,本文提出了一种基于图形处理单元(CPU)的并行差分演化(DE)。提出的方法称为GOjDE,它采用自适应控制参数和广义的基于对立的学习(GOBL)。自适应参数策略有助于避免手动调整控制参数,GOBL有助于提高候选解的质量。对一组最近提出的尺寸为100、200、500和1,000的高维基准问题进行了仿真实验。仿真结果表明,GjODE优于或至少可以与其他六种算法相比,并且使用GPU可以有效地减少计算时间。所获得的最大加速可达75。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号