首页> 外文会议>Advances in computation and intelligence >Hybrid Differential Evolution Algorithm with Chaos and Generalized Opposition-Based Learning
【24h】

Hybrid Differential Evolution Algorithm with Chaos and Generalized Opposition-Based Learning

机译:基于混沌和广义对立学习的混合差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a hybrid differential evolution (DE) algorithm based on chaos and generalized opposition-based learning (GOBL). In this algorithm, GOBL strategy transforms current search space into a new search space with a random probability, which provides more opportunities for the algorithm to find the global optimum. When the GOBL strategy isn't executed, the chaotic operator, like a mutation operator, will be introduced to help the DE to jump out local optima and improve the global convergence rate. Simulation results show that this hybrid DE algorithm can electively enhance the searching efficiency and greatly improve the searching quality.
机译:本文提出了一种基于混沌和广义对立学习(GOBL)的混合差分进化算法。在该算法中,GOBL策略将当前搜索空间转换为具有随机概率的新搜索空间,这为算法找到全局最优值提供了更多机会。当不执行GOBL策略时,将引入混沌算子,如变异算子,以帮助DE跳出局部最优值并提高全局收敛速度。仿真结果表明,该混合DE算法可以选择性地提高搜索效率,大大提高搜索质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号