首页> 外文OA文献 >Adaptive Constrained Differential Evolution Algorithm by Using Generalized Opposition-Based Learning
【2h】

Adaptive Constrained Differential Evolution Algorithm by Using Generalized Opposition-Based Learning

机译:基于广义反对的学习的自适应约束差分演化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Differential evolution is a global optimization algorithm based on greedy competition mechanism, which has the advantages of simple structure, less control parameters, higher reliability and convergence. Combining with the constraint-handling techniques, the constraint optimization problem can be efficiently solved. An adaptive differential evolution algorithm is proposed by using generalized opposition-based learning (GOBL-ACDE), in which the generalized opposition-based learning is used to generate initial population and executes the generation jumping. And the adaptive trade-off model is utilized to handle the constraints as the improved adaptive ranking mutation operator is adopted to generate new population. The experimental results show that the algorithm has better performance in accuracy and convergence speed comparing with CDE, DDE, A-DDE and. And the effect of the generalized opposition-based learning and improved adaptive ranking mutation operator of the GOBL-ACDE have been analyzed and evaluated as well.
机译:差分演进是一种基于贪婪竞争机制的全局优化算法,结构简单,控制参数较少,可靠性更高和收敛性。组合与约束处理技术,可以有效地解决约束优化问题。通过使用基于广义的对立的学习(GoBL-ACDE)提出了一种自适应差分演进算法,其中基于广义的基于反对派的学习用于生成初始群体并执行生成跳跃。随着采用改进的自适应排名突变运算符来生成新人,利用自适应折衷模型来处理限制。实验结果表明,与CDE,DDE,A-DDE和CDE,算法具有更好的精度和收敛速度的性能。还分析并评估了基于广义的基于反对派的学习和改进的自适应排名突变算子的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号