首页> 外文学位 >Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms.
【24h】

Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms.

机译:使用高斯伪谱方法和广义多项式混沌算法的混合随机最优控制问题求解。

获取原文
获取原文并翻译 | 示例

摘要

A hybrid numerical algorithm combining the Gauss Pseudospectral Method (GPM) with a Generalized Polynomial Chaos (gPC) method to solve nonlinear stochastic optimal control problems with constraint uncertainties is presented. TheGPM and gPC have been shown to be spectrally accurate numerical methods for solving deterministic optimal control problems and stochastic differential equations, respectively. The gPC uses collocation nodes to sample the random space, which are then inserted into the differential equations and solved by applying standard differential equation methods. The resulting set of deterministic solutions is used to characterize the distribution of the solution by constructing a polynomial representation of the output as a function of uncertain parameters. Optimal control problems are especially challenging to solve since they often include path constraints, bounded controls, boundary conditions, and require solutions that minimize a cost functional. Adding random parameters can make these problems even more challenging. The hybrid algorithm presented in this dissertation is the first time the GPM and gPC algorithms have been combined to solve optimal control problems with random parameters. Using the GPM in the gPC construct provides minimum cost deterministic solutions used in stochastic computations that meet path, control, and boundary constraints, thus extending current gPC methods to be applicable to stochastic optimal control problems. The hybrid GPM-gPC algorithm was applied to two concept demonstration problems: a nonlinear optimal control problem with multiplicative uncertain elements and a trajectory optimization problem simulating an aircraft flying through a threat field where exact locations of the threats are unknown. The results show that the expected value, variance, and covariance statistics of the polynomial output function approximations of the state, control, cost, and terminal time variables agree with Monte-Carlo simulation results while requiring on the order of (1/40)th to (1/100)th the number of collocation points and computation time. It was shown that the hybrid algorithm demonstrated an ability to effectively characterize how the solutions to optimization problems vary with uncertainty, and has the potential with continued development and availability of more powerful computer workstations, to be a powerful tool applicable to more complex control problems of interest to the Department of Defense.
机译:提出了一种将高斯伪谱法(GPM)与广义多项式混沌(gPC)法相结合的混合数值算法,用于求解具有约束不确定性的非线性随机最优控制问题。 GPM和gPC已被证明分别是解决确定性最优控制问题和随机微分方程的频谱精确数值方法。 gPC使用搭配节点对随机空间进行采样,然后将其插入微分方程,并通过应用标准微分方程方法进行求解。通过将输出的多项式表示构造为不确定参数的函数,可以使用所得的确定性解决方案集来表征解决方案的分布。最优控制问题的解决尤其具有挑战性,因为它们通常包括路径约束,有界控制,边界条件,并且需要使成本函数最小化的解决方案。添加随机参数会使这些问题更具挑战性。本文提出的混合算法是首次将GPM和gPC算法结合起来解决具有随机参数的最优控制问题。在gPC构造中使用GPM可提供满足路径,控制和边界约束的随机计算中使用的最小成本确定性解决方案,从而将当前的gPC方法扩展为适用于随机最优控制问题。混合GPM-gPC算法应用于两个概念演示问题:具有可乘不确定元素的非线性最优控制问题和模拟飞行器飞行穿过威胁场的飞机的轨迹优化问题,其中威胁的确切位置未知。结果表明,状态,控制,成本和最终时间变量的多项式输出函数近似值的期望值,方差和协方差统计量与蒙特卡洛模拟结果相符,而要求的次数约为(1/40)到并置点数和计算时间的(1 // 100)。结果表明,混合算法具有有效地表征优化问题的解决方案如何随不确定性变化的能力,并且随着功能更强大的计算机工作站的不断发展和可用性的不断发展,有可能成为适用于复杂控制问题的强大工具。对国防部感兴趣。

著录项

  • 作者

    Cottrill, Gerald C.;

  • 作者单位

    Air Force Institute of Technology.;

  • 授予单位 Air Force Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号