首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
【24h】

Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems

机译:增强的基于对立的差分进化,用于解决高维连续优化问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel algorithm based on generalized opposition-based learning (GOBL) to improve the performance of differential evolution (DE) to solve high-dimensional optimization problems efficiently. The proposed approach, namely GODE, employs similar schemes of opposition-based DE (ODE) for opposition-based population initialization and generation jumping with GOBL. Experiments are conducted to verify the performance of GODE on 19 high-dimensional problems with D = 50, 100, 200, 500, 1,000. The results confirm that GODE outperforms classical DE, real-coded CHC (crossgenerational elitist selection, heterogeneous recombination, and cataclysmic mutation) and G-CMA-ES (restart covariant matrix evolutionary strategy) on the majority of test problems.
机译:本文提出了一种基于广义对立基于学习(GOBL)的新算法,以提高差分进化(DE)的性能,以有效解决高维优化问题。提出的方法,即GODE,采用类似的基于对立DE的方案(ODE)进行基于对立的种群初始化和GOBL生成跳跃。进行实验以验证GODE在D = 50、100、200、500、1,000的19个高维问题上的性能。结果证实,在大多数测试问题上,GODE优于传统的DE,实编码的CHC(跨代精英选择,异质重组和催化突变)和G-CMA-ES(重新启动协变量矩阵进化策略)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号