首页> 外文期刊>Journal of network and computer applications >Intrusion detection using a fuzzy genetics-based learning algorithm
【24h】

Intrusion detection using a fuzzy genetics-based learning algorithm

机译:使用基于模糊遗传学的学习算法进行入侵检测

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy systems have demonstrated their ability to solve different kinds of problems in various applications domains. Currently, there is an increasing interest to augment fuzzy systems with learning and adaptation capabilities. Two of the most successful approaches to hybridize fuzzy systems with learning and adaptation methods have been made in the realm of soft computing. Neural fuzzy systems and genetic fuzzy systems hybridize the approximate reasoning method of fuzzy systems with the learning capabilities of neural networks and evolutionary algorithms. The objective of this paper is to describe a fuzzy genetics-based learning algorithm and discuss its usage to detect intrusion in a computer network. Experiments were performed with DARPA data sets [KDD-cup data set. http://kdd.ics.u-ci.edu/databases/kddcup99/kddcup99.html], which have information on computer networks, during normal behaviour and intrusive behaviour. This paper presents some results and reports the performance of generated fuzzy rules in detecting intrusion in a computer network.
机译:模糊系统已经证明了其解决各种应用领域中各种问题的能力。当前,越来越有兴趣增加具有学习和适应能力的模糊系统。在软计算领域,已经提出了两种最成功的方法将模糊系统与学习和自适应方法进行混合。神经模糊系统和遗传模糊系统将模糊系统的近似推理方法与神经网络和进化算法的学习能力相结合。本文的目的是描述一种基于模糊遗传学的学习算法,并讨论其在计算机网络中检测入侵的用途。实验是使用DARPA数据集[KDD-cup数据集。 http://kdd.ics.u-ci.edu/databases/kddcup99/kddcup99.html],其中包含有关计算机网络,正常行为和侵入性行为的信息。本文提出了一些结果,并报告了生成的模糊规则在检测计算机网络入侵方面的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号