首页> 外文期刊>Journal of Field Robotics >Energy-efficient Path Planning for Solar-powered Mobile Robots
【24h】

Energy-efficient Path Planning for Solar-powered Mobile Robots

机译:太阳能移动机器人的节能路径规划

获取原文
获取原文并翻译 | 示例

摘要

We explore the problem of energy-efficient, time-constrained path planning of a solar-powered robot embedded in a terrestrial environment. Because of the effects of changing weather conditions, as well as sensing concerns in complex environments, a new method for solar power prediction is desirable. We present a method that uses Gaussian Process regression to build a solar map in a data-driven fashion. Using this map and an empirical model for energy consumption, we perform dynamic programming to find energy-minimal paths. We validate our map construction and path-planning algorithms with outdoor experiments, and we perform simulations on our solar maps to further determine the limits of our approach. Our results show that we can effectively construct a solar map using only a simple current measurement circuit and basic GPS localization, and this solar map can be used for energy-efficient navigation. This establishes informed solar harvesting as a viable option for extending system lifetime even in complex environments with low-cost commercial solar panels.
机译:我们探索了嵌入地面环境的太阳能机器人的节能,时间受限的路径规划问题。由于天气条件变化的影响以及在复杂环境中的感知问题,因此需要一种新的太阳能预测方法。我们提出一种使用高斯过程回归以数据驱动方式构建太阳图的方法。使用该图和能源消耗的经验模型,我们执行动态编程以找到能量最小的路径。我们通过户外实验验证了我们的地图构建和路径规划算法,并在太阳地图上进行了模拟,以进一步确定方法的局限性。我们的结果表明,仅使用简单的电流测量电路和基本的GPS定位就可以有效地构建太阳图,并且该太阳图可以用于节能导航。这就建立了明智的太阳能收集系统,即使在复杂的环境中,使用低成本的商用太阳能电池板,也可以延长系统的使用寿命。

著录项

  • 来源
    《Journal of Field Robotics》 |2013年第4期|583-601|共19页
  • 作者单位

    Department of Computer Science and Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455;

    Department of Computer Science and Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455;

    Department of Computer Science and Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号