首页> 外文期刊>Journal of computational science >A multi-layered point reordering study of GPU-based meshless method for compressible flow simulations
【24h】

A multi-layered point reordering study of GPU-based meshless method for compressible flow simulations

机译:基于GPU的可压缩流模拟无网格方法的多层点重排序研究

获取原文
获取原文并翻译 | 示例

摘要

In meshless methods, clouds of points irregularly distributed are widely used in discretizing computational domains and are usually unavoidable to accommodate complex geometries. However, the irregularity of points has been reported to be negative effect on the GPU memory access pattern, which results in low performance in GPU computations. In order to remedy this negative effect, a multi-layered point reordering (MLPRO) approach is proposed in this paper for GPU-based meshless implementations. Layer structures based on the virtual connections between central and satellite points in meshless clouds are constructed and used to reorder the points in a layer-by-layer manner. Besides, point reordering inside each thread warp, which is rarely concerned in GPU implementations, is further considered by proposing a supplemental group satellite reordering to form a modified MLPRO approach. Furthermore, by defining virtual connectivity matrixes of meshless clouds of points in the whole computational domain, the effect of reordering mentioned to the data localities can be visibly observed to have a comprehensive view of the improvement of point locality. Supersonic flows in a rectangular channel are firstly selected to test the effect extent of irregularity of meshless points to the GPU performance by increasing the percentage of irregular points occupied in the computational domain. Then flows over two- and three-dimensional aerodynamic configurations are simulated to show the performances of the reordering approaches presented. Numerical results show that significant enhancements of GPU speedups can be achieved for all test cases, particularly for the three-dimensional M6 wing and RAE wing-body combination cases with up to 2.5x further speedups, which is meaningful for simulations with large-scale irregular meshless clouds of points. (C) 2019 Elsevier B.V. All rights reserved.
机译:在无网格方法中,不规则分布的点云广泛用于离散计算域,通常不可避免地要适应复杂的几何形状。但是,据报道,点的不规则对GPU内存访问模式有负面影响,这导致GPU计算性能低下。为了纠正这种负面影响,本文针对基于GPU的无网格实现提出了一种多层点重排序(MLPRO)方法。基于无网格云中中心点和卫星点之间虚拟连接的层结构被构建并用于以逐层方式对点进行重新排序。此外,在每个线程扭曲内的点重新排序(在GPU实施中很少关注),通过提出补充的组卫星重新排序以形成改进的MLPRO方法,得到了进一步考虑。此外,通过在整个计算域中定义点的无网格云的虚拟连通性矩阵,可以明显地看到对数据局部性提到的重新排序的效果,从而可以全面了解点局部性的改善。首先选择矩形通道中的超音速流,以通过增加计算域中占据的不规则点的百分比来测试无网格点的不规则性对GPU性能的影响程度。然后,对二维和三维空气动力学结构上的流动进行仿真,以显示所提出的重新排序方法的性能。数值结果表明,在所有测试案例中,尤其是在三维M6机翼和RAE机翼组合案例中,GPU加速比都可以显着提高,进一步提高了2.5倍,这对于大规模不规则模拟非常有意义。无网格的点云。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号