首页> 外文期刊>Journal of computational science >A multi-layered point reordering study of GPU-based meshless method for compressible flow simulations
【24h】

A multi-layered point reordering study of GPU-based meshless method for compressible flow simulations

机译:基于GPU的无压力模拟方法的多层重新排序研究

获取原文
获取原文并翻译 | 示例

摘要

In meshless methods, clouds of points irregularly distributed are widely used in discretizing computational domains and are usually unavoidable to accommodate complex geometries. However, the irregularity of points has been reported to be negative effect on the GPU memory access pattern, which results in low performance in GPU computations. In order to remedy this negative effect, a multi-layered point reordering (MLPRO) approach is proposed in this paper for GPU-based meshless implementations. Layer structures based on the virtual connections between central and satellite points in meshless clouds are constructed and used to reorder the points in a layer-by-layer manner. Besides, point reordering inside each thread warp, which is rarely concerned in GPU implementations, is further considered by proposing a supplemental group satellite reordering to form a modified MLPRO approach. Furthermore, by defining virtual connectivity matrixes of meshless clouds of points in the whole computational domain, the effect of reordering mentioned to the data localities can be visibly observed to have a comprehensive view of the improvement of point locality. Supersonic flows in a rectangular channel are firstly selected to test the effect extent of irregularity of meshless points to the GPU performance by increasing the percentage of irregular points occupied in the computational domain. Then flows over two- and three-dimensional aerodynamic configurations are simulated to show the performances of the reordering approaches presented. Numerical results show that significant enhancements of GPU speedups can be achieved for all test cases, particularly for the three-dimensional M6 wing and RAE wing-body combination cases with up to 2.5x further speedups, which is meaningful for simulations with large-scale irregular meshless clouds of points. (C) 2019 Elsevier B.V. All rights reserved.
机译:在无网格方法中,不规则地分布的点云广泛用于离散化计算结构域,并且通常是不可避免的,以适应复杂的几何形状。然而,据报道,点的不规则性对GPU存储器访问模式产生负面影响,这导致GPU计算中的低性能。为了解决这种负效应,本文提出了一种基于GPU的无网格实现的多层重新排序(MLPRO)方法。基于无网格云中的中央和卫星点之间的虚拟连接的层结构构造,并用于以逐层方式重新排序点。此外,通过提出补充组卫星重新排序以形成改进的MLPRO方法,进一步考虑了在每个线程翘曲内部的点重新排序,这很少涉及GPU实现。此外,通过定义整个计算域中的点数云的虚拟连接矩阵,可以明显地观察到对数据区域内提到的重新排序的效果,以综合了解点局部的改进。首先选择超音速流动在矩形通道中流动以通过增加计算域中占用的不规则点的百分比来测试无网格点对GPU性能的效果程度。然后模拟超过两维空气动力学配置,以显示所呈现的重新排序方法的性能。数值结果表明,对于所有测试用例,可以实现GPU加速的显着增强,特别是对于三维M6翼和RAE翼身,具有高达2.5倍的进一步加速,这对于大规模不规则的模拟是有意义的无网点云点。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号