首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >RUNWAY DETECTING AND TRACKING OF AN UNMANNED AERIAL LANDING VEHICLE BASED ON VISION
【24h】

RUNWAY DETECTING AND TRACKING OF AN UNMANNED AERIAL LANDING VEHICLE BASED ON VISION

机译:基于视觉的无人驾驶飞机跑道检测与跟踪

获取原文
获取原文并翻译 | 示例

摘要

When a monocular vision-based unmanned aerial vehicle (UAV) is flown to the final approach to intercept the glide slope, the position and orientation of the airport runway in the image must be detected accurately for a host of suitable procedures to be followed. The approaching marking on the runway is showed as some white spots of high intensity as well as the complicated backgrounds. In our paper, we use pin-hole perspective principle, the constraint condition of the rectangle in inertial space, the front shot constraint condition of the target, as well as the clustering algorithm to identify the runway and output its position and orientation in image space. The results of the experiments show that by this algorithm, even from a place far away from the runway with marks being unclear, effective detection is possible. After all, single-frame detection errors exist, so we extend the basic runway-detection algorithm to the runway tracking. A full filtering strategy using particle filter can guard against potentially catastrophic results and improve the detection rate. Apparently, the whole algorithm of our paper can be treated as a special vision sensor for landing equipment of UAV.
机译:当将基于单眼视觉的无人机(UAV)飞行到最终方法以拦截滑坡时,必须遵循一系列合适的程序来准确检测图像中机场跑道的位置和方向。跑道上接近的标记显示为一些高强度白点以及复杂的背景。在本文中,我们使用针孔透视原理,惯性空间中矩形的约束条件,目标的前镜头约束条件以及聚类算法来识别跑道并在图像空间中输出其位置和方向。实验结果表明,利用该算法,即使在距跑道较远,标记不清楚的地方,也可以进行有效的检测。毕竟存在单帧检测错误,因此我们将基本的跑道检测算法扩展到跑道跟踪。使用粒子过滤器的完整过滤策略可以防止潜在的灾难性结果并提高检测率。显然,本文的整个算法可以作为无人机着陆设备的特殊视觉传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号