首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Saliency Region Detection Method Based on Background and Spatial Position
【24h】

Saliency Region Detection Method Based on Background and Spatial Position

机译:基于背景和空间位置的显着性区域检测方法

获取原文
获取原文并翻译 | 示例

摘要

Saliency region detection methods have become one of the hotspots in the field of image processing as an important method to improve the real-time and accurate analysis of massive data. Integrating more effective prior knowledge is a viable direction for improving the performance of saliency region detection methods. Most of the methods based on background prior and boundary connectivity prior assume the boundary area of the image as the background, by restraining the background to highlight the salient area. When the boundary area of the image does not describe the background well (such as a large difference in border area features), if the entire frame of the image is put together to compute the background feature, the calculation of the background feature will be inaccurate. In view of the above shortcomings, this paper proposed a saliency region detection method based on background and spatial position. This method carried on the image boundary super pixel clustering, determined the background feature according to the clustering center, and used the difference between the super pixel on the image and the background super pixel, and its spatial position to calculate the salient of the super pixels. This approach used MATLAB to program and experiment. The method was compared with a series of the state-of-the-art methods. The AUC of proposed algorithm reaches 0.839, and the MAE is 0.220, showing the effectiveness of the proposed algorithm.
机译:显着区域检测方法已成为图像处理领域的热点之一,作为提高海量数据实时性和准确性的重要手段。整合更有效的先验知识是提高显着性区域检测方法性能的可行方向。大多数基于背景先验和边界连通性先验的方法都是通过限制背景以突出显示显着区域,将图像的边界区域作为背景。当图像的边界区域不能很好地描述背景时(例如边界区域特征差异很大),如果将图像的整个帧放在一起以计算背景特征,则背景特征的计算将不准确。鉴于上述缺点,本文提出了一种基于背景和空间位置的显着区域检测方法。该方法进行图像边界超像素聚类,根据聚类中心确定背景特征,并利用图像上的超像素与背景超像素之间的差异以及其空间位置来计算超像素的显着性。 。这种方法使用MATLAB进行编程和实验。该方法与一系列最新方法进行了比较。所提算法的AUC达到0.839,MAE为0.220,证明了所提算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号