首页> 外文期刊>Expert systems with applications >Visual saliency detection by integrating spatial position prior of object with background cues
【24h】

Visual saliency detection by integrating spatial position prior of object with background cues

机译:通过将物体与背景提示集成空间位置来视觉显着性检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an effective visual saliency-detection model based on spatial position prior of attractive objects and sparse background features. Firstly, since multi-orientation features are among the key visual stimuli in the human visual system (HVS) to perceive object spatial information, discrete wavelet frame transform (DWDT) is applied to extract directionality characteristics for calculating the centoid of remarkable objects in the original image. Then, the color contrast feature is used to represent the physical characteristics of salient objects. Thirdly, in order to explore and utilize the background features of an input image, sparse dictionary learning is performed to statistically analyze and estimate the background feature map. Finally, three distinctive cues of the directional feature including the color contrast feature and the background feature are combined to generate a final robust saliency map. Experimental results on three widely used image datasets show that our proposed method is effective and efficient, and is superior to other state-of-the-art saliency-detection models.
机译:在本文中,我们提出了一种基于吸引物体和稀疏背景特征的空间位置的有效视力检测模型。首先,由于多取向特征是人类视觉系统(HVS)中的关键视觉刺激,以便感知对象空间信息,因此应用离散小波帧变换(DWDT)来提取用于在原始物体中计算出色物体的百分比的方向特征图片。然后,颜色对比度特征用于表示突出对象的物理特征。第三,为了探索和利用输入图像的背景特征,执行稀疏的字典学习,以统计分析和估计背景特征映射。最后,组合了包括颜色对比度特征和背景特征的定向特征的三个独特提示,以产生最终的稳健性图。三种广泛使用的图像数据集的实验结果表明,我们所提出的方法是有效且高效的,并且优于其他最先进的显着性检测模型。

著录项

  • 来源
    《Expert systems with applications》 |2021年第4期|114219.1-114219.11|共11页
  • 作者单位

    Shandong Univ Finance & Econ Sch Comp Sci & Technol Jinan 250014 Peoples R China|Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China;

    Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China;

    Univ Portsmouth Sch Creat Technol Portsmouth PO1 2DJ Hants England;

    Qingdao Univ Coll Comp Sci & Technol Qingdao 266071 Peoples R China;

    Shandong Univ Finance & Econ Sch Comp Sci & Technol Jinan 250014 Peoples R China;

    Shandong Univ Finance & Econ Sch Comp Sci & Technol Jinan 250014 Peoples R China;

    Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China;

    Shandong Univ Sch Software Engn Jinan 250101 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discrete wavelet transform; Saliency detection; Background features; Position prior;

    机译:离散小波变换;显着性检测;背景特征;之前的位置;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号