...
首页> 外文期刊>International journal of humanoid robotics >Standing Posture Control of Bipedal Robots with Adaptive Compliance Under Unknown Payload Variations and External Disturbances
【24h】

Standing Posture Control of Bipedal Robots with Adaptive Compliance Under Unknown Payload Variations and External Disturbances

机译:在未知载荷变化和外部干扰下具有自适应适应性的双足机器人的站立姿势控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

When executing tasks, robots are required to demonstrate compliance to unexpected external disturbances or human-robot interactions, and return to the demanded posture when the disturbances or contacts are removed. Traditional Virtual Model Control (VMC) requires precise gravitational compensation to accurately control the posture of a robot. Hence, load variations or other uncertain unmodeled factors in the robot will result in offsets to its balance posture, which makes the robot deviate from the demanded posture when it is in a static state. To reject this offset without sacrificing the compliance of the robot, an adaptive controller is proposed in this paper to implement adaptive compliance on the robot, which makes the robot robust to the variations in gravitational loads in the double leg support phase. The adaptive controller is a combination of the VMC controller and an online gravitational loads estimator, in which the estimator is derived in the double leg support phase to estimate the values of these parameters and obtains an online updating law based on a Kalman optimal estimator. Then, a Lyapunov function is designed to modify and combine the controller and the online gravitational loads estimator. The experiments are conducted on a 4 DoF bipedal robot in the sagittal plane to validate the effectiveness of the controller and show that, by estimating the gravitational loads of the robot, the effects of load variations on balance posture are rejected without sacrificing compliance.
机译:在执行任务时,要求机器人表现出对意外的外部干扰或人机交互的顺从性,并在去除干扰或接触点后回到要求的姿势。传统的虚拟模型控制(VMC)需要精确的重力补偿才能准确地控制机器人的姿势。因此,机器人中的负载变化或其他不确定的非建模因素将导致其平衡姿势发生偏移,这会使机器人在静态时偏离所需的姿势。为了在不牺牲机器人柔度的情况下消除这种偏移,本文提出了一种自适应控制器,以在机器人上实现自适应柔度,这使得机器人在双腿支撑阶段对重力载荷的变化具有鲁棒性。自适应控制器是VMC控制器和在线重力负载估计器的组合,其中在双腿支撑阶段导出估计器以估计这些参数的值,并基于卡尔曼最优估计器获得在线更新定律。然后,设计一个Lyapunov函数来修改和组合控制器和在线重力载荷估计器。实验是在矢状面上的4自由度双足机器人上进行的,以验证控制器的有效性,并表明,通过估算机器人的重力载荷,可以抵消载荷变化对平衡姿势的影响,而不会牺牲柔韧性。

著录项

  • 来源
    《International journal of humanoid robotics》 |2017年第3期|1750014.1-1750014.31|共31页
  • 作者单位

    Zhejiang Univ, State Key Lab Ind Control & Technol, 38 Zheda Rd, Hangzhou, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Ind Control & Technol, 38 Zheda Rd, Hangzhou, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Ind Control & Technol, 38 Zheda Rd, Hangzhou, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Ind Control & Technol, 38 Zheda Rd, Hangzhou, Zhejiang, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compliance; adaptive control; bipedal robot;

    机译:合规性;自适应控制;双足机器人;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号