首页> 外文学位 >Control of a flexible-link robotic arm manipulating an unknown dynamic payload.
【24h】

Control of a flexible-link robotic arm manipulating an unknown dynamic payload.

机译:操纵未知动态有效载荷的柔性链接机械臂的控制。

获取原文
获取原文并翻译 | 示例

摘要

When light-weight space-based robots, such as the space shuttle's RMS (remote manipulator system), manipulate massive payloads such as satellites, significant structural bending is induced in the links of the robot. In addition, space-based robots will often manipulate payloads that are not rigid bodies: for example, satellites may contain fuel or have flexible appendages. This dissertation contributes new basic technology that will enable flexible-link manipulators to perform precise end-point control of payloads while simultaneously controlling the unknown internal dynamics of the payloads.;The approach taken here combines high-performance control with an innovative identification algorithm. In addition, to facilitate the development of controllers, a numerically efficient procedure to merge payload and arm dynamic models is presented.;First, controllers incorporating end-point feedback with a known payload are made robust to high-frequency modelling errors, sensor noise, and sensor biases using frequency-weighted linear quadratic gaussian design methods. Using end-point position measurements as the primary sensor, the robot is then capable of actively damping the internal payload dynamics an order of magnitude faster than the natural damping rate--if it knows the payload parameters. However, with this type of controller small parameter variations in the payload can lead to poor performance or instability.;This research has therefore also developed an identification algorithm that updates the end-point controller parameters; this enables the system to achieve high performance when the payload dynamics are not known apriori. By using a nominal control law, the identification problem can be reduced to detecting and identifying eigenvalues of a closed-loop system. To identify these eigenvalues, a generic algorithm capable of determining the eigenvalues of a system in real time has been developed: even the order of the system need not be known in advance. With this approach, moreover, the identification algorithm does not require that the system inject broad-band excitation in order to work accurately.;An experimental robotic system was designed and built to test these emerging control strategies. All of the control strategies have been verified on the experimental robot. Experimental results demonstrate, for the first time, precision end-point control of a very flexible single-link robot arm with unknown dynamic payloads.
机译:当轻型天基机器人(例如航天飞机的RMS(远程操纵器系统))操纵大量有效载荷(例如卫星)时,会在机器人的连杆中引起明显的结构弯曲。此外,天基机器人通常会操纵不是刚性物体的有效载荷:例如,卫星可能包含燃料或具有柔性附件。本文为新的基础技术做出了贡献,它将使柔性链接机械手能够对有效载荷进行精确的端点控制,同时控制有效载荷的未知内部动态。此处采用的方法将高性能控制与创新的识别算法相结合。此外,为促进控制器的开发,提出了一种将有效载荷和手臂动态模型合并的数值有效程序。首先,使结合了已知有效载荷的端点反馈的控制器对高频建模误差,传感器噪声,和传感器偏置使用频率加权线性二次高斯设计方法。如果使用端点位置测量作为主要传感器,那么该机器人便能够主动衰减内部有效载荷动力学,其速度比自然衰减率快一个数量级(如果它知道有效载荷参数)。然而,对于这种类型的控制器,有效载荷中的参数变化很小会导致性能下降或不稳定。因此,本研究还开发了一种识别算法,该算法可更新端点控制器参数;当未知载荷动态时,这使系统能够实现高性能。通过使用名义控制律,可以将识别问题简化为检测和识别闭环系统的特征值。为了识别这些特征值,已经开发了一种能够实时确定系统特征值的通用算法:甚至不需要预先知道系统的顺序。此外,使用这种方法,识别算法不需要系统注入宽带激励即可正常工作。;设计并构建了一个实验机器人系统来测试这些新兴的控制策略。所有控制策略均已在实验机器人上进行了验证。实验结果首次证明了动态载荷未知的非常灵活的单链接机器人手臂的精确终点控制。

著录项

  • 作者

    Alder, Lawrence John.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号